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Goals

* Introduce basic physiology and describe how to model it

. . . . . using robotics techniques
Robotics and Animatronics in Disney & a

Lecture 7: Human Modeling and Control
* Introduce attempts to understand human motor control

principles
Katsu Yamane

kyamane@disneyresearch.com * Discussion on differences between simple vs. complex

models for human motion analysis
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Musculoskeletal Model

Skeleton

Human Body Modeling

Musculo-tendon network
[Nakamura et al. TRO 2005]
[Yamane et al. ICRA 2005]
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Skeleton Muscles/Tendons/Ligaments

997 muscles

. » 50 tendons

@? % 117 ligaments
Mo [,

2

200 bones->53 rigid bodies
(no fingers)

155 DOF by mechanical joints
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Musculo-Tendon Network

Mass-less, zero-radius wires with via-points
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Dynamics Simulation

Wire tensions I:> Joint torques

‘ 1. Obtain equivalent joint torques ‘

6=]"f

2. Forward dynamics computation
for articulated rigid bodies
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Wire Tension Estimation

Optimization [Challis 1997] [Rasmussen 2003]
Minimize Subject to
Tg _]Tf + _f _fmuxSfSO

via linear or gdadratic programming

Reference muscle tension

{ 0 — numerically optimal tensions
from EMG data — physiologically realistic tensions
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m =
Dynamics
Wire tensions <:> Joint torques
Moment arm
T = af = ]Tf
o
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m =

Wire Tension Estimation

Wire tensions <:| Joint torques

1. Inverse dynamics computation
for articulated rigid bodies

‘ 2.Solvet; =JTf ‘

Infinite number of solutions!

Unique solution
Physiological reality
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Linear Programming

[Nakamura et al. 2005] [Yamane et al. 2005]

* Consider EMG data for physiological reality
* Linear programming formulation

minimize
_ Al T
Z=a,0, +a;5; (a,,af >O)
subject to __— Error of the mapping equation
SRS AN "
0< 51 J __—~ FError from a reference tension
-5, <f- f < S { f™ =0 — minimizes total force
Compute from EMG data
<
0< 5' Muscles can only pull

—f_<f<0
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Physiological Muscle Model Physiological Muscle Model

EMG to muscle tensions

Muscle model [Hill 1938] |
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Numerical model [stroeve 1999]
-1} 0 I< —vm)
F()= e)@{f[%] } F ()= V;n(V,mx +|)/V5,,Vm -1 — Vi S I< O) muscle activity @
* Vo VoV Vil VeV 1 (0<1) [Hill 1938]

P Muscle tensions | * = aF (I)F, (INF,,| g o™
, —— —}M
| —— & ——

LI LI
Examples EEEE S —
N "\‘/‘ \a ‘
oA N ( I ‘W‘m/ ‘V\‘
toe toe .| | VN “ . \i b b
walk wak &1 0L AT
i 3 | s i W
= ! | | | ! i
I T - L LR
I = [ NS -5l
: (JJ “ {‘ L
heel € wml [ i
walk fel] r /\/
i UU
o e

Realtime Interface

[Murai et al. EMBC 2009]

Neuromuscular Control

.’74 [Murai, Yamane, Nakamura EMBC 2007]
1‘ [Murai and Yamane ICRA2011]
)
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Understanding Motor Control Modeling the Reflex Behavior
How motor commands are generated * Neuromuscular network model
* Parameter identification
* Evaluation
— Simple reflex
— Reflex in walking motion
[MacLean 1990]
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Neuromuscular Network Model Motor Command Signals

[Murai, Yamane, Nakamura EMBC 2007]
Peripheral nervous system
(PNS)
* Inputs and outputs

* 997 muscles: 997 independent control signals?

— Inputs: motor command signals at spinal ,
nerve rami } 5 * Alot of work suggests that human motions are confined
— Outputs: muscle tensions ' 7 in smaller space
* Two paths: H — Joint trajectories [Safonova et al. 2004]
— CNS->PNS: descending pathway ‘ — Muscle synergy [Bernstein 1967]

— PNS->PNS: ascending and descending
pathways (somatic reflex network)

U * Hypothesis: muscles are controlled by fewer independent
Central nervous system | signals
(CNS) |
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Motor Command Signals Neuromuscular Network Model
[Murai, Yamane, Nakamura EMBC 2007] [Murai, Yamane, Nakamura EMBC 2007]
* Independent component analysis (ICA)
A N
; ,/': WIC/ELS;/)
Muscle tensions Independent signals

— Estimate mutually independent signal sources
— Order of the independent signals is undefined

onf| Dimension of s?
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Somatosensory Information

Neuromuscular Network Model

* Somatosensory information for reflex:
— Muscle spindle: senses muscle length and velocity,
induces stretch reflex, antagonistic inhibition, etc.
— Golgi tendon organ: senses muscle tension, induces Ib
inhibition

|—=descending pathway
+~ascending pathway
o sigmoid function

ah
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Neuromuscular Network Model Neuromuscular Network Model
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Neuromuscular Network Model

Neuromuscular Network Model

Muscle length /
force sensors

Muscle
tensions |
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Neuromuscular Network Model

Anatomical connection
with time delay (30ms)

descending pathway
+ascending pathway
gmoid function

me-delay

Weight Parameter of Reflex Loop

from lliacus (hip flexion) to
muscle weight
lliacus 4.20E+00
Sartorius 2.60E-01
Rectus Femoris 3.94E+00
Pectineus 4.60E-01
Gracilis -4.06E-01
Adductor Longus -1.69E-01
Adductor Brevis -3.59E-01
Adductor Magnus -4.10E-02

[ hip flexion muscles

4
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Patellar Tendon Reflex

hit!

&
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Experiment

* Parameter identification
— 5000 cycles
— Error
* average: 2.59%
* variance: 0.34%

training data (2000 frames/10 seconds)
o
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Weight Parameter of Reflex Loop

from Tensor Fasciae Latae
(hip flexion) to
muscle weight

Tensor Fasciae Latae 2.93E-01
Gluteus i -1.28E-01
Biceps Femoris -4.53E-01
Semitendinosus -1.02E+00
Semimembranosus -1.13E+00
Gluteus Medius -4.94E-02
Gluteus Minimus -9.30E-01

[ hip extension muscles

s
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Reflex in Walking Motion

.’1‘? [Murai and Yamane 2011]
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Further Validation of Reflex Model

More complex behavior: walking

i Videos from
Human response to trips [Enget al. 1994] [Cham 2009]

* Lowering strategy: E
— Trip at later stage of swing(55-75%)

— Swing leg is lowered for immediate contact

* Elevating strategy:
— Trip at early stage of swing(5-25%)
— Swing leg is lifted for collision avoidance
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Simplified Model
Saggital plane
7 muscles in each leg (14 muscles)
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Identified Parameters

Positive force feedback for
synergistic muscle
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Negative force feedback for
antagonistic muscle
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Human Response to Trips

[Pijnappels et al.05]

* EMG within 100ms is observed Musle Actiy imi]
- involuntary response at: tripping § % 100ms

* Induced by reflex system?

2 o o1 oz 03 o
stance time [5]
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Parameter Identification

.
b

(x0.03)
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C:/Users/kyamane.SCS/Dropbox/20130722/20110510_ICRA2011/Elevating.mov
C:/Users/kyamane.SCS/Dropbox/20130722/20110510_ICRA2011/Lowering.mov
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Additional Controller Dynamic Simulation of Locomotion

Upper body control:
Apply PD controller to fixed posture
Mechanical joint limit:

Strong spring is applied at knee joint
limit

Swing leg PD control:

Ankle joint has weak spring and damper « Model cannot continue walking

during swing phase o L . .

* Similar to original joint motions despite

— lack of reference trajectory

— difference in the contact condition

o . Pittsburgh
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Simulation of Trip Response Summary

* Detailed musculoskeletal model
— Modeling
— Dynamics

* Neuromuscular network model
— Control signal from ICA
— Patellar tendon reflex

* Reflex in Walking

13% of swing phase 55% of swing phase

* Qualitatively similar to elevating / lowering strategies

* Simulated muscle activities match reported EMG in GAS,
SOL, and GM [pijnappels et al.05]

— Simplified model for simulation
— Trip responses
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Discussion

* Level of details
— We started from a very detailed human model
— Then used simpler model for further validation
— Many researchers work with simple models

* Which model makes sense?
— Simple models can miss details?
— Parameter identification?
— Signal/noise ratio?
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