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Our research group at Graduate School of Engineering, Osaka University, has been seek-
ing for the methods of behavior learning to accomplish the given task. The approach is
not task-specific but expectant of being meaningful from a viewpoint of information pro-
cessing in our brain, and we have been attacking several kinds of issues by constructing a
model and verifying it through real robot experiments. In this section, the following three
issues are explained with implementation details and achievements:

1. observation strategy learning for decision making of small quadruped based on in-
formation theory,

2. multi-layered learning systems for vision-based behavior acquisition of a real mo-
bile robot, and

3. vision-based reinforcement learning for humanoid behavior generation with rhyth-
mic walking parameters.

(1) Goal and summary

1. Observation strategy learning for decision making of small quadruped based on
information theory Mobile robots are often equipped with vision sensors that provide
huge amount of data, which demands methods to appropriately extract information for
action decision such as attention control.
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Figure 1: Robot and the experimental field (same as the one for RoboCup 1999 SONY
legged robot league). Cross and circle marks indicate the starting position and the ball
position.

The aim of this research is to propose an efficient observation strategy for action deci-
sion of a small quadruped robot. We define the efficiency by the time used for observation
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Figure 2: A part of the action decision tree. F, L, and R mean forward, left forward, and
right forward respectively.

Figure 3: An example of the changes of the probability distribution.

to make a decision. We compare the contribution of the observation by the information
gain. The observation strategy we propose is to do observations in the order of the infor-
mation gain. First, we proposed a method which requires a robot to stand still to observe
and make a decision. Then, we proposed an extension which enables observation during
walking motion.

We used the information gain as a measure to determine which target (landmark)
should be observed, and realized the efficient observation strategy for action selection [1].
To compress and memorize the training data in the manner of an action decision tree, we
used a kind of classifier tree construction method by the information gain. A training data
set is given to the robot with the direction to observe the landmark and the action to be
taken just after the observation. By the occurrence probabilities of actions in the training
data, it calculates the Shanon’s information gain and constructs the action decision tree
which instructs to observe landmarks in the decreasing order of the information gain.

Figure 1 shows a robot and its soccer field that we used in the experiments. A ball
was put at the circle in front of the goal. The task was to put a ball into the goal starting
from one of the three positions in the field (cross marks in the figure). Figure.2 shows a
part of the action decision tree constructed by the method. This tree instructs the robot
that when the ball is observed in the left direction (‘b’), check the direction of the target
goal (‘c’, ‘d’ or ‘f’) and decide an action. Figure 3 shows a sequence of the movements
of the robot with action decision tree. It started from the center right position in the field
and took the following actions: (1) turn left, (2) observe landmark, (3) move forward, (4)
move forward, and then (5) turn left. We see that at (2), it could not determine action
because of the ambiguity in the action probabilities. However at (4) and (5), one of the
action probabilities was high and it could determine its action in spite of the ambiguity
in observation for one or two landmarks. These show typical situations we intended, in



Table 1: Comparison of average number of gaze directions, and time to make a decision
in the experiments.

# of average gaze average
data directions time[s]

pre-quantized 34 3.1 3.3
info. gain 43 3.5 3.3
info./time 35 1.3 0.85

which observation is done not for self-positioning but for action decision.
Next, we extended the method so that it can handle not only discrete values but also

continuous sensor values [2]. Generally, sensors equipped on a robot output continuous
values. Then, we often quantized sensor spaces in advance to convert them to discrete
values. However, there are a number of problems such as loosing the order inside the
tessellated unit, the granularity of the tessellation, and so on. Therefore, autonomous
quantization of the sensor values is suitable for decision making.

C4.5 is a well known method which autonomously quantizes continuous values during
construction of a classifier tree. C4.5 divides a value with a threshold into two discrete
values so that the information gain is maximized by the devision. However, to know a
landmark’s observed direction in divided space, one must observe several directions with
a limited view angle camera. We proposed to use an attention window for a division. An
attention window is a range of a continuous value in which landmark is observed. To
know whether a landmark is in an attention window or not, one has to observe only one
direction. Then, we proposed a method to construct an action decision tree by comparing
the information gain to know whether a specific landmark is observed in an attention
window. Quantizations of continuous values are done by attention windows during the
tree construction. The constructed action decision tree instructs the landmark and the
direction to observe. We also proposed to use the information gain per time in cases
where the time to gaze depends on the gaze direction.

We show the experimental result with a task of navigation in a robot soccer situation.
Table 1 shows the average gaze directions and the average observation time used for an
action decision. The ‘pre-quant’ in the table indicates the case where we quantized sensor
space in advance and the action decision tree was constructed by information gain. The
‘info. gain’ in the table indicates the case where quantizations were done by the proposed
attention windows and the action decision tree was constructed by information gain. The
‘info./time’ in the table indicates the case where quantizations were done by the proposed
attention windows and the action decision tree was constructed by information gain per
time. We see that the average observation time drastically decreased with the use of the
information gain per time. Figure 4 shows the created attention windows in each case. We
see that attention windows of different sizes are created with needs and attention windows
concentrates in the center direction with use of information gain per time, which reduce
the observation time.

Next, we proposed the extension for observation during walking [3]. To realize more
efficient observation strategy, observation during walking is important.
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Figure 4: Generated attention widows.

There are issues on observation and action decision during walking,

1) large sensor errors because of shakes by walking,

2) movements between the sensor capture and the end of vision sensor processing,
movements among several gazes,

3) appropriately stop or slow down when there are too much ambiguity for action
decision to avoid bumping and so on.

For the extension of our previous methods, we need, 1) a compensation method for shak-
ing due to walking, 2) an integration method of observations from different positions and
different gazes, and 3) a measure of ambiguity of action selection in order to appropriately
stop walking.

For the problem 3) we propose to use the expected information gain in addition to
action probabilities for the measure of ambiguity. When the expected information gain
or action probabilities do not meet the thresholds, the robot stops and observes. Also
we propose an image compensation mechanism for shakes by walking and movements
between gazes and solve problems 2) and 3). Compensation values are calculated only
from the image sequences. We calculate the observation probabilities at current position
when the robot observes landmarks standing still by the observation during walking with
the compensation values.

Figure 5 shows the shakes by walking and the result of the compensation. Figure 6
shows the sequence of observation and action decision in a navigation task by proposed
method.

2. Multi-Layered Learning Systems for Vision-based Behavior Acquisition of A Real
Mobile Robot In the machine learning area, several approaches have tried to make
agents learn purposive behaviors autonomously to achieve their goals through agent-
environment interactions. Especially, reinforcement learning has recently been receiving
increased attention as a method for behavior learning with little or no a priori knowledge
and higher capability of reactive and adaptive behaviors.

In order to realize an autonomous robot which acquires various behaviors by itself in
real world, it is necessary to be able to manage a wide range of state and action variables
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Figure 5: Image compensation to the y axis by proposed method.
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Figure 6: Changes of expected information gain, the highest action probability, and ac-
tions. One of which has the highest action probability, and the other is the one taken by
the robot.

according to situations, to keep the spaces as small as possible, and to learn/control be-
haviors based on the small state and action spaces. It is almost impossible or impractical
that robot acquires the various behaviors for the given tasks based on a huge monolithic
state/action space which consists of all sensors’ information and actuators commands,
because the computational resources are limited and learning time is not eternity from a
practical viewpoint.

Another approach to the problem of the curse of dimension and the perceptual aliasing
is to adopt a hierarchical structure within leaning control system. That is, the system

1. prepares learning/control modules of one kind, each of which deals with a subspace
divided from a whole state/action space,

2. abstracts situations and behaviors based on the acquired learning/control modules,
and



3. acquires higher level, new behaviors based on the state and action spaces con-
structed from already abstracted situations and behaviors.

This approach can suppress the explosion of the state and action spaces since the higher
level learning/control system manages adequately small size spaces which are abstracted
in the lower levels.

We proposed a mechanism which constructs learning modules at higher layers using a
number of groups of modules at lower layers. The modules in the lower networks are self-
organized as experts to move into different categories of sensor value regions and learn
lower level behaviors using motor commands. In the meantime, the modules in the higher
networks are organized as experts which learn higher level behavior using lower modules.
We applied the method to a simple soccer situation in the context of RoboCup[4], and
showed the the validity of this method.

Figure 7 shows a picture of a mobile robot we designed and built, a ball, and a goal,
and an overview of the robot system. It has two TV cameras. One has a wide-angle
lens and is tilted down in front of the body in order to capture the ball image as large
as possible. Other has a omni-directional mirror and is mounted on the robot. A simple
color detection method is applied to detect objects around the robot on the images in real-
time. The driving mechanism is PWS (Power Wheeled System), and the action space is
constructed in terms of two torque values to be sent to two motors that drive two wheels.
These parameters of the system are unknown to the robot, and it tries to estimate the
mapping from sensory information to appropriate motor commands by the method. The
environment consists of the ball, and the goals, and the mobile robot.
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Figure 7: A mobile robot, a ball, and a goal (left), and an overview of the robot system
(right)

The robot prepares learning modules of a kind, makes a layer with the modules, and
constructs a hierarchy with the layers. The hierarchy of the learning modules’ layers
seems to play a role of task decomposition (Figure 8). The lower learning modules explore
small areas, and learn lower level, fundamental behaviors. In contrast, the upper learning
modules explore a large area, and learn higher level, more abstracted behaviors based on
the learning modules at the lower layer [5].

The proposed architecture of the multi-layered reinforcement learning system is shown
in Figure 9, in which (a) and (b) indicate a hierarchical architecture with two levels, and
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individual learning module embedded in the layers. Each module has its own goal state
in its state space, and it learns the behavior to reach its goal using Q-learning method.
The state and the action are constructed using sensory information and motor command,
respectively, at the bottom level.
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Figure 9: A hierarchical learning architecture

This multi-layered learning system defines situations/behaviors based on the modules
of lower layers, defines state and action spaces using them, and acquires new abstracted
behaviors on them. The left side of figure 10 shows a rough sketch of this idea. The
system assigns learning modules on the state space of a certain layer. Each learning
module acquires the behavior to reach its own goal specified on the state space. The
another layer on it regards a region assigned to a lower learning module as a situation,
and a motion to a close region as a behavior.

The system learned and constructed the four layers and one learning module exist at
the top layer (the left side of figure 10). The state space of the lower layer is constructed
in terms of the centroid of the goal images, and the action space is constructed in terms
of two torque values to be sent to two motors that drive two wheels. The state and action
spaces at the upper layer are constructed by the learning modules at the lower layer which
are automatically assigned.

The basic idea for the self-distribution of learning modules is “to assign the goal state
of each learning module in the state space uniformly”. Because it seems difficult to define
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Figure 10: The concept of abstraction from learning modules to situations and behaviors
(left), and the implemented hierarchy architecture of learning modules (right)

a distance function in the state space in advance, we use the state value function as the
distance function that estimates the distance to its own goal state because we can regard
that state value represents how close the robot is to the goal if the robot received reward
only when it reach its goal. Figure 11 shows the distribution of goal state activations
of learning modules at the bottom layer in the state spaces of wide-angle camera image
(left) and omni-directional mirror image (right), respectively. The x, y axes indicate the
centroid of goal images.
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Figure 11: The distributions of learning modules at lower layer on the normal camera
image (left) and the omni-directional camera image (right)

When the higher layer constructs its state-action space based on situations and behav-
iors acquired by the modules of several lower layers, it should consider that the layers
are independent of each other, or there is dependence between them. The layer might be
basically independent from each other when each layer’s modules recognize a different
object and learn behaviors for it. On the other hand, there might be dependence between



the layers when modules on all layer recognize the same object in the environment and
learn the behavior against it. For example, the system would regard that both layers are
independent from each other if the modules on one layer acquire several navigation be-
haviors, and the modules on the other layer acquire object manipulation behaviors; in the
case of robot in the RoboCup field, one layer’s modules could be experts for ball handling
and the other layer’s modules ones for navigation on the field. On the other hand, it will
recognize that there is a certain relationship between the layers when the system captures
a number of data which represent one certain object with different sensor devices. In
such a case, the system can recognize the situation complementarily using plural layers’
outputs even if one layer loses the object on its own state spaces. Now, we proposed “a
multiplicative approach” for the former, and “a complementary approach” for the latter
[6], and implemented to the real robot (Figure 12). At the lowest level, there are four
learning layers, and each of them deals with its own logical sensory space (ball positions
on the perspective camera image and omni one, and goal position on both images). At
the second level, there are three learning layers in which one adopts the multiplicative
approach and the others adopt the complementary approach. The multiplicative approach
of the “ball pers.�goal pers.” layer deals with lower modules of “ball pers.” and “goal
pers.” layers. The arrows in the figure indicate the flows from the goal state activations
to the state vectors. The arrows from the action vectors to behavior activations are elimi-
nated.

y

x

Goal image
perspective camera

x

y

Goal image
omni camera

y

x

perspective camera
Ball image

x

y

Ball image
omni camera

LM LM LM LM LM LM LM LM LM

LM LM LMLM LM LMLM LM

LM LM LM

LMLM LM LMLM

LM LMLM

LM LMLM LM

LMLM

level
1st

level
2nd

level
3rd

4th
level

ball pers.+omni

ball x goal

ball x goal (bgL3)

goal pers.+omni (gpoL2)

goal omni (goL1)goal pers. (gpL1)ball omni (boL1) ball pers. (bpL1)

ball pers+omni (bpoL2) ball pers. x goal pers. (bgL2)

goal pers.+omni

Figure 12: A hierarchy architecture of learning modules

We let our robot shoot a ball into the goal using this multi-layer learning structure.
The target situation is given by reading the sensor information when the robot pushes the
ball into the goal; the robot captures the ball and goal at center bottom in the perspective
camera image. As an initial position, the robot is located far from the goal, faced opposite
direction to it . The ball was located between the robot and the goal. The left side of Figure
14 shows the time development of the goal state and behavior activations of learning
modules at all levels while the robot shoots the ball into the goal. The arrows on the
top of each series indicate the behavior activations, and the others indicate the goal state



Figure 13: A sequence of a shooting behavior and its camera images

activation. The goal state activation g is a normalized state value V , and g � � when
the situation is the goal state. When the module receives the behavior activation b from
the higher level modules, it executes the optimal policy for its own goal, The right side
of Figure 14 shows the sequence of the behavior activation of learning modules and the
commands to the lower layer modules. The down arrows indicate that the higher learning
modules fire the behavior activations of the lower learning modules.

3. Vision-based reinforcement learning for humanoid behavior generation with rhyth-
mic walking parameters The research community for biped walking has been growing
and various approaches have been introduced. Among them, there are two major trends in
biped walking. One is a model based approach with ZMP (zero moment point) principle
or the inverted pendulum model. The other one is inspired by the findings in neuro-
physiology that most animals generate their walking motions based on the central pattern
generator (hereafter, CPG) or neural oscillator. This sort of approach does not need model
parameters that are as precise as ZMP or the inverted pendulum, which might show the
robustness against the environmental changes. In order to increase the adaptability, the
external information such as vision is used, but often 3-D accurate reconstruction seems
necessary.

This section presents a method for generating vision-based humanoid behaviors by
reinforcement learning with rhythmic walking parameters [7]. A rhythmic motion con-
troller such as CPG or neural oscillator stabilizes the walking. The learning process con-
sists of building an action space with two parameters (a forward step width and a turning
angle) so that infeasible combinations are inhibited, and reinforcement learning with the
constructed action space and the state space consisting of visual features and posture pa-
rameters to find a feasible action. The method is applied to a situation from the Humanoid
RoboCupSoccer league in RoboCup, that is, to approach the ball and to shoot it into the
goal. Instructions by human are given to start up the learning process, and the rest is
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Figure 14: A sequence of the goal state activation and behavior activation of learning
modules (left) and a sequence of the behavior activation of learning modules and the
commands to the lower layer modules (right)

solely self-learning in real situations.
Figure 15 (a) and (b) show a humanoid platform Fujitsu HOAP-1 (the height is around

50cm) and an overview of the proposed system, respectively. We applied a CPG-based
rhythmic walking developed by Prof. Tsuchiya’s group (Kyoto University) in the Robo-
Brain project, which consists of trajectory control and phase shift control. The latter is
triggered by the signals from FSR sensors attached on the soles.

A reinforcement learning module above the motion generation module learns to de-
termine the rhythmic walking parameters: turning angle � and step width � (see Figure
16(a)). These parameters depends on the posture before action execution, that is, feasible
and infeasible ones. The latter means tumbling over that should be avoided in cases of real
robot learning to minimize the damages to the robot hardware. Then, the feasible walking
parameters are found by a trial and error technique. The turning angle � and step width �
are quantized into three (-10, 0, and 10 degrees) and four (0, 10, 25, and 60mm), totally
12 selections. Depending on the walking parameters selected just before the selection,
feasible combination of walking parameters are found. Figure 16 (b) and (c) show the
results, in which the vertical and horizontal axes indicate the step width and turning angle
of previously selected parameters, respectively. White boxes indicate feasible parameters
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Figure 15: A humanoid and the proposed system
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Figure 16: rhythmic walking parameters and feasible waling parameters



and gray boxes infeasible ones. Although the result should be symmetric, asymmetry
appears due to the difference of physical properties between left and right parts of the
platform.

(a) an on-board image

X

Y

(b) a ball state space

X

Y

(c) a goal state space

Figure 17: An on-board image and the state space

As an example task, a sort of situation from RoboCupSoccer Humanoid league is
supposed. That is, to approach to the ball in front of the goal and to kick the ball into
the goal. In addition to the visual information, the image of the ball and the goal, posture
parameters (here, the walking parameters just before the action selection correspond to
them) are prepared to construct the state space. Figure 17 (a) shows an on-board image
from the camera within a fish-eye lens to capture the range of the field as wide as possible.
Color information (the red ball and the blue goal) helps the object detection. Figure 17 (b)
and (c) show the ball and the goal state space, respectively, where space quantization in
terms of direction (and distance) are carried out. Grey regions with cross marks indicate
the state where the reward 1 is give. Otherwise, zero rewards are given everywhere.

(a) a slightly oblique forward
motion

(b) an approach from side (c) a case where neither ball
nor goal is observed from the
initial position

Figure 18: Experimental results

One of the most serious issues in applying the reinforcement learning method to real
robot tasks is how to accelerate the learning process. To do that, we give the instructions to
start up the learning: during the first 50 episodes (about a half hour), the human instructor



avoids useless exploration by directly specifying the action command to the learner about
10 times per episode. After that, the learner experienced about 1500 episodes. Owing
to the initial instructions, learning converged in 15 hours, and the robot learned to get
the right position from any initial positions inside the half field. Figure 18 shows three
examples. (a) indicates a slightly oblique forward motion, and (b) an approach from
side from where the ball and the goal image are far away, and therefore distant from the
rewards. In both cases, we can see that the robot adjusted its step width as it approaches
to the ball. (c) shows a case in which the robot can observe neither ball nor goal from the
initial position. Then, it turned, found the ball and the goal, and approached to the ball.

(2) Results and their importance

1. Observation strategy learning for decision making of small quadruped based on
information theory Our aim was to propose and validate methods to realize efficient
observation for a mobile walking robot equipped with a limited view angles camera. We
have proposed a observation strategy that select an observation target by the information
gain, a observation strategy that select the attention window and the target, and an obser-
vation strategy during walking. For each proposed method we have validated that it can
realize an efficient observation strategy with the experiments using a legged robot.

2. Multi-layered learning systems for vision-based behavior acquisition of a real
mobile robot We proposed a mechanism which constructs learning modules at higher
layers using a number of groups of modules at lower layers. We applied the method to
a simple soccer situation in the context of RoboCup[4], showed the experimental results.
We also proposed methods to merge state spaces at higher level while the layers at the
lower level assigned to the subspaces, and applied to the real robot.

We proposed a simple mechanism of self-organization of hierarchical structure. How-
ever, we still need a mechanism which enables the system to select layers to be combined,
to judge which approach is suitable, in order to develop various kinds of purposive behav-
iors. Further, the current method has focused on the state space hierarchy, but the idea of
hierarchy construction seems applicable to the action space hierarchy, too. These are our
future work.

3. Vision-based reinforcement learning for humanoid behavior generation with rhyth-
mic walking parameters Vision-based humanoid behavior was generated by reinforce-
ment learning with rhythmic walking parameters. Since the humanoid generally has many
DoFs, it is very hard to control all of them. Instead of using these DoFs in the action space,
we adopted rhythmic walking parameters, which drastically reduces the search space and,
therefore, real robot learning was possible in a reasonable time. As a method of humanoid
behavior generation adapting to external situations, the proposed architecture would be
useful to be applied to various kinds of tasks. State space construction by learning is one
of the future issues.
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