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(1) Goal and summary

The purpose of the research is to propose a novel brain-like information processing frame-
work which can connect motion patterns and symbols. We have focused on two knowl-
edge: “Mimesis Theory” and “Mirror Neurons” for the purpose. The discovery of mirror
neurons[1] have been a notable topic of brain science which have been found in primates’
brain and humans’ brain, fire when the subject observes a specific behavior and also fire
when the subject start to act the same behavior. Furthermore, it is located on Broka’'s
area which has close relationship between language management. The fact suggests that
the behavior recognition process and behavior generation process are combined as the
same information processing scheme, and the scheme is nothing but a core engine of
symbol manipulation ability. Indeed, in Donald’s “Mimesis Theory”[2], it is said that
symbol manipulation and communication ability are founded on the behavior imitation,
that is integration of behavior recognition and generation. We believe that a paradigm
can be proposed taking advantage of the mirror neurons, with considerations of Deacon’s
contention[3] that the language and brain had evolved each other.

For the purpose, we have developed following four frameworks: (1) Mutual connec-
tion model between motion patterns and symbols based on hidden Markov model, (2)
Keyframe compression and decompression for time-series data based on the continuous
hidden Markov model, (3) Imitation learning model with embodiment based on discrete
continuous hybrid HMM, (4) Development and manipulation of proto-symbols based on
geometric proto-symbol space.

Mutual connection model between motion patterns and symbols based on hidden
Markov model

We have focused on a stochastic information processing framework of the hidden
Markov model(HMM) in order to integrate symbol representation and motion patterns
of humanoid robots which have a lot of degree of freedoms. The HMM is regarded as a
symbol representation which is named as “proto-symbol”, also used for the development
of the mutual connection model . The mutual connection model consists of two phases. In
the first half, observed motions are transformed into motion elements by comparing, and
are abstracted as proto-symbols. Observed motion patterns are analyzed into the motion
elements, and the sequence of the motion elements are abstracted into proto-symbols, re-
garded as a series of behavior. Figure 1 shows the HMM which expresses motion patterns,
that is time-series data of motion elements.

Generation of motion patterns from the HMM is equal to generate time-series data
of motion elements. However, it is difficult to calculate the sequence by only the HMM,
because the generation process is equal to search a motion pattern which has the best
likelihood value among the all the entire motion patterns. Most simple way to generate
suitable motion patterns is to find the maximum likelihood by scanning the entire pat-
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Figure 1. Representation of motion patterns using hidden Markov model

tern space. However, it is difficult to adopt this method because the size of the search
space will be increase in proportion to the exponential of the time length of the motion
pattern. In order to encode a motion pattern into a chromosome, each motion element is
corresponded to each gene. As the fitness of the chromosome, the likelihood of that the
motion patterns are generated by the HMM is used. It have also adopted translocation not
simple crossover and mutation. It is suitable for the evolution to keep a series of behavior
because the block of self motion elements indicates the series of behavior.

A mathematical model for the integration of motion recognition and generation is
achieved using above methods. Figure 2 shows an outline of the proposed framework.

Keyframe compression and decompression for time-series data based on the contin-
uous hidden Markov model

Memory of motion patterns as data, comparison of a new motion pattern with the data,
and playback of one from the data are inevitably involved in the information processing
of intelligent robot systems. Such computation forms the computational foundation of
learning, acquisition, recognition, and generation process of intelligent robotic systems.
Motion patterns along with temporal sensory data would be appropriate to describe be-
haviors of a robot. This is the computational problem of time series data and the subject
of the present paper.

The computational problem of time series data would need to consider: (1) efficiency
of data compression/decompression, and (2) unification of algorithms for memory (com-
pression), comparison and playback (decompression). The former is mandatory since it
determines the volume of database of motion patterns. The latter is not a must, but an im-
portant requirement to maintain consistency of the three kinds of computation. We have
focused on the keyframe representation for the purpose. Keyframe is one of the famous
method for motion design, especially in computer graphics, which is a motion patterns
at several impressive moments. Time-series data of motion patterns are combined using
these keyframe in the computer graphics. Recently, The keyframe is used for the motion
planning of robots and motion recognition because the frame representation has affinity
for such issues.
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Figure 2: Mutual connection model between motion patterns and symbols based on hid-
den Markov model

Proposed mimesis model has no criterion for designing the motion element. Itis effec-
tive for the mimesis model to adopt the keyframe representation for the motion elements

design.
For the keyframe representation, continuous hidden Markov model (CHMM) is used
as shown in Fig.3.The CHMM consists of a finite set of st&#tes {s;,--- , sy}, a state

transition probability matrixA = {a;; }, output probability function® = {b,(0)} and an
initial distribution vectorr = {7;}, that is a set of parametér= {S, A, b, 7}. b;(0).
Here,b; is output probability density function

bi(0) = ciiNij(0; iy, Tij) (1)

j=1

, that relates continuous output vectmwith the i-th state nodes;. M indicates the
number of Gaussian functions A§o; u, X2).
The CHMM generates motion patterns by the stochastic process as shown in Fig.3.
We have defined the motion elements as keyframes of the motion pattern as follows:

u® {p, T} (2)

These parameters is calculated by Baum-Welch algorithm.
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Figure 3: Motion pattern representation using continuous HMM

Here, there are sway among each reproduction processes because of the property of
stochastic models. The time length of the moti@hslways changes by the state transi-
tion probability A, the value for each moment of the time-series data also always changes
by the output probability; (o). We propose an average strategy in order to cancel these
sway.

stepl Getting a state transition sequer@e= [syy, sk, - -+, swry)» (k[i] € {1,2,--+ | N})
with a trial of the state transition process.

step2 An average of transition sequen@sis calculated by, times repetition@,,--- , Q,, )
of the stepl.

step3 Output time-series dai@ is calculated by a trial of output according to the aver-
age transition sequencg.

step4 O.,---,0,, is calculated by, times repetition fronstep1 to step3.

step5 Average time-series da@ is calculated by th€,, - - - , O,,, after regularization
of the time length.

wheren,, n, are decided experimentally.

Figure 4 shows the example decomposition result using the method. Target data is a
certain joint angle of a humanoid robot. The dot-line indicates the original time-series
data, the dashed line indicates a result of single output @g). (There are deviance for
time direction and value direction, however, the deviance for time direction was cancelled
usingStep2, and the deviance for value direction was also cancelled ugieg5. Final
output result is shown as solid line. As the figure shows, output time-series data is similar
to the original time-series data.

I mitation lear ning model with embodiment based on discrete/continuoushybrid HM M
There were several remained problems in the mimesis model as follows:
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Figure 4. Generation of time-series data using continuous HMM

1. There is no exact principle how to design the motion elements. In previous works,
static and limited motion elements had been embedded by the developer before-
hand. It is necessary for the mimesis system to develop the motion elements in
order to be suitable for imitation learning from observation experience.

2. Physical condition of the motion had not been taken into consideration. As physical
characteristic of learner and demonstrator is different, therefore, the observer can-
not reproduce the same motion. The motion elements have to be suitable for both
recognition of other’s motion and embodiment of humanoids.

3. The motion elements were correspond to each joint. Thus the number of motion
elements becomes no less than the number of DOFs in order to represent the whole
body motion. it causes the complexity of symbol representation. Furthermore, the
motion elements should represent correlation information between each joint.

Because of the above-mentioned reason, we propose a new method for acquisition of
motion elements with two characteristics; a) use of continuous HMM and b) modification
of elements during observation and generation loop. The approach a) enables the system
to avoid the problems 1) and 2). On the other hand the approach b) enables the system to
avoid the problem 2) and 3).

For the purpose, we have introduced continuous HMM which is a kind of HMM
which can treat continuous data. The difference between DHMM and CHMM is that the
transition process outputs continuous vectors as shown in Fig.3.

Although many advantages are available, CHMM have a disadvantage that huge com-
putational quantity is needed. It should take much time for motion generation and recog-
nition. Therefore we have proposed a hybrid Hidden Markov Model which consists of
CHMM and DHMM as shown in Fig.5. In motion recognition and generation phase,



DHMM are used which computational quantity is little. In motion elements acquisition
phase, CHMM are used which computational quantity is large.
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Figure 5: Mimesis model based on discrete continuous hybrid HMM

The mimesis model acquires adequate motion elements during the repetition of motion
recognition and generation. Following steps are the procedure for the motion elements

development.
1. Generating of the motion patterns from proto-symbols.
2. Evaluation of the motion patterns based on recognition criterion.
3. Ifthe score is good, the motion patterns is added into the database.

4. Returning to the step 1, after the recalculation of motion elements.

The performance of motion recognition and generation is influenced by the character-
istic of motion elements. If the motion elements had no relationship between the observed
motion, the recognition process would be failed. Therefore, we adopted an approach that
the system searches the best motion elements with an evaluation criterion whether the gen-
erated motion would be fit for the body and the recognition would be succeeded against
familiar motion. Using the method, the humanoid can acquire adequate motion elements
through repetition of motion perception and generation.

A result with the limitation condition is shown in Fig.6. In the figure, three axes
indicate hip joint (pitch), knee joint and ankle joint (pitch). The curved line in the figure
corresponds to the motion trajectory. The dots indicate acquired motion elements. The
result shows that the motion elements are basically located near by the original motion
trajectory. Additionally, the Motion elements are gathered not only on the A area, but also
on the B area in Fig.6. These motion elements located on the B area is acquired by the



generated self-motions in the database, which fits for the humanoid embodiment. This
result shows that the both motion elements are acquired; elements for the recognition of
others’ motions (A area) and ones for the generation of self-motion (B area).
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Figure 6: Acquired motion elements

Development and manipulation of proto-symbols based on geometric proto-symbol
Space

Symbols are required to represent similarity or opposite between each symbol, how-
ever, proto-symbol representation cannot express the relationship between each proto-
symbol as shown in Fig.7(left). Therefore, we have extended our HMM based method in
order to express a geometric proto-symbol space which contains relative distance infor-
mation among proto-symbols[6] as shown in Fig.7(right).
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Figure 7. Usual mimesis model (left) and advanced mimesis model (right)

Through distance is needed for construction of space, distance between two HMM is
not able to be defined easily because it is stochastic model. For such stochastic modes,
there is a method in order to express the distance information. In this paper, we adopt
Kullback-Leibler information as the representation of distance between HMM. To say
strictly, the Kullback-Leibler information is not distance because it does not satisfy the
property of the distance; triangle inequality and symmetry, therefore we call the Kullback-
Leibler information as degree of similarity of the HMM. The Kullback-Leibler informa-



tion against two HMM\; and )\, is defined as follows [4].

A1) = logp(y1t|A2)] (3)

1 1 _
DA de) == = [logp(y]"

2

D, (A1, %a) = 5 (DO, ) + Dda, M) @

where,y!" is time-series data for learning of the whose time length i}, n is the
number of observed time-series data.

In order to construct proto-symbol space from the distance information, multidimen-
sional scaling (MDS) is used. MDS is a method that accepts distance information among
elements and outputs position of each element in the generated space. Let the similarity
between-th element ang-th element ag;;, the distance betweerth andj-th element
asd;;. MDS makes the following error to be minimum for the space construction. We
have adopted;()\;, \;) as thef;;.

motion recognition and generation in the proto-symbol space In case that an
unknown behavior is observed by the mimesis model which have existing 6 proto-symbols
in the geometric space, observed motion pattern is converted into a parameter oAHMM
Next, the parameték is projected in the proto-symbol based on the distance calculation
result betweer\ and each existing proto-symbols A\o0 - - - O \,,.

Using the geometric proto-symbol space, the model can recognize unknown behaviors
as a state point in the proto-symbol space, and generate novel behaviors using combination
of proto-symbols by known proto-symbols, that is geometric proto-symbol manipulation
in the proto-symbol space.

Creating a novel proto-symbol is equal to create a novel state point on the proto-
symbol space. To create a novel state point, following composition regulation is used:

M
bl(o) = Z acimAN(l"l'imA7 a-szA)

m=1
M
+Z(1 _O‘)CimBN(”imBaa-?mB) (5)
m=1
ai; = aajj, + (1 — a)ag, (6)

Eq.(5) and Eq.(6) is applied when a novel state point is located on a straight line con-
necting the two pointsXy and\g). When a novel state point is not on any straight lines
connecting known proto-symbols, the parameter is composed according to the distance
ratio among each known proto-symbol as follows:

— . 1 l 7
aij_zdzZziaij )
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Figure 8: Procedure of projecting motion in proto-symbol space

whered, is the distance between a novel state point and known proto-sykpleinally,
law-level motion pattern is generated from the state point.

Humans’ behavior are always novel and unknown motion, therefore, motion recogni-
tion system always have to output an unknown symbol representation which corresponded
to the novel behavior. The proto-symbol space can indicate a long motion pattern as a se-
guence of state points in the geometric space, and also generate a long motion pattern
from the sequence of state points in the proto-symbol space.

The outline of novel motion recognition as state sequence in the proto-symbol space
is shown if Fig.8 In step 1, focusing on the period of tifg,,, in the observed motion pat-
ternO = [0, 0, --- or]. Letthe cut off motion pattern b@; = [0[1] 0[2] -+ o[Tspan) ]

In step 2, state pointis decided using mentioned method in previous paragraph. Next, shift
the focus point, and let thieth focus point b&@;, = {01 (k—1)7u.,s ** 5+ O TLpun+(k=1)Turep I
with increase the index ds= 1,2, - , == -T2 1 1 Finally in step 3, sequence of state
point in the proto-symbol space is acquirseeé.

Furthermore, motion generation can be performed against the state transition sequence
in the proto-symbol space. In this paragraph, a motion generation method in which a state
transition sequence have been given. Let be the state transitiefijag[2], - - - , z[n].

As a generation method in which a fixed state point is given in the proto-symbol space is
introduced before, the continuous generation by transitional state points is equivalent to
the average of motions which generated by those state points.

Figure 9 shows the outline of the generation process. In step 1, motion patters are
generated from each state point in the proto-symbol space using the proposed method.
In step 2, the time length of all motion patterns are set to the same Yaluneorder to
composition. In step 3 and 4, partial motion patterns are picked up based on the phase
information for each state point, that is, charging period of time for each state point.
Finally in step 5, composite motion pattern are generated.

Result of motion generation and recognition using the hier ar chical mimesismodel
We confirmed the performance of the proposed space construction method against six
kinds of motion; walk, kick, squat, stoop, stretch and throw, as shown in Fig.10. At first,
we gave 10 dimensional vector for eaghy, xo, ... , z,}. As from first to fourth dimen-
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Figure 9: Procedure of motion pattern generation in proto-symbol space

sions are effectively used for the space construction, however, the rest of the dimension
are not well used. Therefore, we adopted three dimensional proto-symbol space as shown
in Fig.12.

We performed a recognition experiment in which novel motion pattern are transfered
into a sequence of state points in the proto-symbol space. The target motion is “walking
first, then shift to kicking”. The result is shown in Fig.13. As the diagram shows, rec-
ognized dot marks starts from the proto-symbol of “walk”, ends at the proto-symbol of
“kick”.

Motion recognition using the HMM is famous method, thus many research are pro-
posed for gesture recognition or behavior understanding [5], however, no research has
been existed in which motion is generated from HMM.

In this experiment, we have investigate the motion output when a traje&igtyis
given in the proto-symbol space. As a given trajectory, we prepared simple line trajectory
from the “walking” state point to the “kicking” state point. Figure 13 is the result of
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Figure 11: A novel motion pattern : “kick after walk”

motion output. As the figure shows, motion of the humanoid is adequately controlled as
the symbol manipulation in the proto-symbol space.

Approach to intelligence based on hierarchical structure In this model, motion
patterns of humans and humano@i$) are abstracted by HMM, and converted as a state
point x in the proto-symbol space. A static state patns corresponded to a time-series
data@(t). As the state point is a vector in the proto-symbols space, time-series data
of the state pointX[t] = [ «[1] z[2] --- x[n] | also can be abstracted using HMM.
We call such a tautological HMM as “hierarchical mimesis model”. We also define the
abstracted representation from the state point sequ&fi¢eas meta proto-symbol as
shown in Fig.14

Using the hierarchical mimesis model, motion pattefiis) are converted to more
abstract representatiot by the repetition of abstract process. One of the advantage of
adopting the HMM is easiness for the connection between low-level motion patterns and
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Figure 12: A result of proto-symbol construction and recognition result using it

high-level symbols.

(2) Resultsand their importance

In this research, we have proposed a framework which realizes motion recognition/generation,
symbolize the motion patterns, and leads to intelligence of humanoid based on mimesis
theory. In our mimesis model, proto-symbols and motion elements are introduced with
hidden Markov model in order to integrate following four abilities using only one math-
ematical model; (1) abstraction of motion patterns and symbol representation , (2) acqui-
sition of motion elements, that is keyframe representation of motion patterns based on
continuous HMM, (3) imitation learning based on discrete/continuous hybrid HMM, and
(4)recognition of unknown motion and generation of novel motion based on a geometric
proto-symbol space. Through experiences, the feasibility of proposed mimesis model is
cleared. Furthermore, we proposed hierarchical mimesis model in which the HMM are
overlapped in order to connect low level motion patterns and high level symbols.

Symbol emergence had been tried in conventional research of artificial intelligence.
The most difficult issue of the symbol emergence is how to manipulate the created sym-
bol representation, contrary to the easiness of symbol creation. Deacon have proposed the
symbol development model [3] as shown in Fig.15. In his theory, symbolic representation
is developed from indexical level and iconic level. In the indexical level, simple rela-
tionship between a motion pattern and a symbol representation is established, however,
relationship between each symbol and motion pattern is not considered. In the transi-
tional level, relationship between each symbol is developed as token combinations, then
the relationship between each motion pattern starts to be constructed. In the final level,
logical relationship between symbol combined with the physical relationship between



Figure 13: A result of motion pattern generation : kick after walk

motion pattern. Our approach follows the development model. At the present moment,
our method achieved the transitional level and is going to achieve the final symbolic level.

Following effects are expected by realization of mutual development model between
motion patterns and symbols;

1. Motion learning by imitation : It is possible for a humanoid to acquire target
motion patterns by observation even if the body condition of learner differs from
the one of teacher based on the transmission of symbol representation.

2. Motion learning by instructions : Design of humanoid motion has complexity
because of the large number of degree of freedoms. Teacher’s symbolic instruction
helps the development of motion patterns.

3. Constructiveunder standing of high level brain function : This research aims the
connection between motion patterns and symbols from engineering point of view.
Additionally, brain science and psychology also have close relationships between
language and behavior. Ripple effects from engineering will reach to the interdisci-
plinary research, that is combination of brain science, neuro science, psychology.
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