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(1) Goal and summary

Introduction Humanoid has less actuators than its movable degrees of freedom (DOF)
which includes the unactuated six DOF of the translation and rotation of the pelvis. There-
fore, we may not be able to find a sequence of actuator inputs to achieve a motion gener-
ated without considering the dynamics. In addition, it is very difficult to adapt a motion
to various situations because common humanoids have more than 20 DOF and practical
motion generation techniques are limited to motion capture or numerical optimization.

In order to study brain-like information processing, it is important to measure or com-
pute the sensor information such as vision and somatosensory information, as well as the
motion data. Commercial motion capture systems can only capture the motion of subjects
which are typically modeled as kinematic chains with similar complexity as humanoids.
In addition, it is very difficult to add a new hardware or improve the software of commer-
cial systems.

In this research, we developed the following methods and systems:

� Parallel efficient dynamics computation of human figures: This method not only
serves as the basis for motion generation considering dynamics, but also improves
the efficiency of the computations of simulating and controlling motions of hu-
manoids.

� Motion generation of human figures considering physical consistency: This method,
called dynamics filter, can generated motions that are both physically consistent and
human-like by modifying motion capture data.

� Intuitive motion generation using inverse kinematics: This method is capable of
generating whole-body motions of human figures by only specifying several fixed
links and the trajectory of a link. This is enabled by extending conventional algo-
rithm for inverse kinematics.

� Behavior capture system: We combined our original motion capture system with
other sensors including force plate and gaze direction sensor.

� Dynamics computation of musculoskeletal human model: We can compute the so-
matosensory information by developing the methods for computing the dynamics
of human model composed of bones, muscles, and tendons.

The following sections briefly describes the result of our research in the above topics.

Parallel Dynamics Computation of Human Figures The dynamics computation of
kinematic chains has been studied by many researchers. However, realtime dynamics
computation of human figures is still a challenging problem because they usually contain
20 to 50 DOF. In this research, we developed an algorithm which takes only O(logN)
CPU time where N is the number of links.



Figure 1: Concept of steps 1.(above) and 2.(below)

Summary of the algorithm The algorithm consists of the following four steps:

1. Assuming that the links are not constrained at all, add a joint one by one and com-
pute the constraint force at each new joint, f sub, applying the Principle of Virtual
Work (see 1 above). The intermediate chains are called subchains. Note that f sub

is the constraint force in the subchain, not in the complete chain.

2. Remove every joint in the reverse order of step 1. and compute the final constraint
force ffinal. Completing this step gives all the joint forces.

3. Compute the acceleration of each link.

4. Compute the joint accelerations using those of the neighboring links.

Note that, in steps 1 and 2, adding or removing a joint to assemble or disassemble sub-
chains with no kinematic connections can be processed in parallel. By utilizing parallel
computation, the total computation time can be reduced to O(logN) where N is the number
of links.

Optimizing the schedule The order of adding and removing joints in steps 1. and 2.
is described by a binary as shown in Figure 2(a)–(c). Each node represents the subchain
including all the successor joints. Node 3 in Figure 2(b), for example, represents the
subchain with joints 1 and 3. The whole chain will be completed by connecting subchains
3 and 2 through joint 4.

For a given binary tree, step 1. is executed from the leaf nodes to the root, while step
2. is executed from the root to the leaves. A binary tree gives an intuitive idea of the
parallelism and the total computational cost of the schedule as follows:



Figure 2: A binary tree to describe the schedule

Figure 3: Binary trees for a 7-joint serial chain optimized for (a) serial computation, (b)
parallel computation

� The width of the tree indicates the total computational cost. Optimizing the tree in
terms of the total computational cost yields the tree shown in Figure 2(a) which has
the least number of branches. This is the optimal schedule for serial computation.

� The height of the tree indicates the computation time when enough number of pro-
cessors exist, or in other words, the parallelism of the schedule. The trees in Fig-
ure 2(b) and (c) takes approximately the same time when they are executed on
two processors. The total computational cost, on the other hand, is larger than the
schedule in Figure 2(a).

Figure 2 shows two trees optimized for (a) serial computation and (b) parallel computation
on four processors.

Simulation examples We implemented the algorithm on an 8-node cluster. Each
node has a PentiumIII 1GHz processor and connected to the network via Myrinet. Table 1
shows the computation time for serial chains with 8 to 32 links on 1 to 8 processes.

Figure 4 shows the motion obtained by simulating the motion of a 40 DOF human
figure, which initially holds the bar by both hands and later releases the right hand. The
computation time for serial computation was 5.1 ms without connection, 6.3 ms with one
connection, and 7.2 ms with two connections. Figure 5 shows the schedule optimized for
serial computation when only one of the hands holds the bar. This schedule still has large
parallelism because of the branched structure of the human figure.



Table 1: Computation time for serial chains (ms)
links 8 16 32

1 procs 1.31 2.75 6.08
2 procs 0.984 1.87 3.93
4 procs 0.897 1.70 3.39
8 procs — 1.57 2.90

4 procs* — 1.58 3.16

Figure 4: Simulation of a 40 DOF human figure

Motion generation of human figures considering physical consistency

Dynamics filter The dynamics filter is a filter that converts a physically inconsis-
tent motion into a consistent one by slightly modifying the original. A captured motion
is physically consistent for the human subject, but may be inconsistent for a humanoid.
Kinematically editing several motion sequences is also likely to yield physically incon-
sistent motions. We would be able to reuse existing motion data if we could modify
physically inconsistent motions such that the new motion becomes consistent.

Previous work on the dynamics filter tends to use global optimization techniques
which do not allow interactions with the user. In real environment, however, the mo-
tion has to be generated in real time rather than planned in advance. The dynamics filter
we developed only uses efficient local optimization, and therefore allows realtime input
of the reference motion to maintain high interactivity.

Equation of motion of constrained systems Humanoids are often subject to exter-
nal constraints from the environment. Their equation of motion is described as follows:
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Figure 5: The schedule optimized for the human figure in Figure 4

where

A � joint-space inertia matrix

b � gravity, centrifugal, and Coriolis forces

�G � generalized coordinates

� J � joint torques

�C � constraint forces

HJ � ��J���G

HC � ��C���G

�J � joint values of the actuated joints

�C � position and orientation of the constraint

If we know the joint torques � J , Eq.(1) has a unique solution and we can compute the
generalized accelerations for dynamics simulation. For the dynamics filter, in contrast, we
treat the equation as a redundant equation in generalized accelerations ��G, joint torques
� J , and constraint forces �C whose solutions include all the physically feasible motions.

Implementation of the dynamics filter The accelerations in the original motion

data ��
d

G do not always satisfy Eq.(1). We introduce the error term ���G so that the mod-

ified acceleration ��G � ��
d

G � ���G satisfies Eq.(1). ���G is computed by the following
equation:
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The dynamics filter consists of the following two components:

(A) determining ��
d

G We need a feedback controller to correct the tracking error due
to the modification of the acceleration. We apply the feedback controller used in resolved
acceleration control [1] to all the joints including the 6 DOF of the body joint, to com-

pute the desired acceleration ��
d

G. We also apply a skyhook controller which feedback the



Cartesian position of the head to keep the balance of the whole body. The skyhook con-

troller modifies ��
d

G such that the acceleration of the head equals to its desired acceleration
computed from the current and desired position and orientation of the head link.

(B) optimization We first compute the solution space of the following equation us-
ing weighted pseudo inverse:

�
���

T

G � TC � TJ
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whereW is the coefficient matrix of left-hand-side of Eq.(2), u is the vector in the right-
hand-side, V � E �W �W , and y is an arbitrary vector. We can adjust the relative
magnitude of the acceleration change and joint torques by the weight for computing the

weighted pseudo inverse. Next, we reduce the error term ���
T

G by using y. Let us focus

on the rows related to ���
T

G of Eq.(3):
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where ���
�

G is the error term for y � O. y is computed by solving the following equation:

V Gy � ����
�
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which is then substituted to Eq.(3) to compute the modified acceleration.
Figure 6 shows an example of generated motion, where we used the capture data

of walking motion on a horizontal floor as the reference and put the human figure on a
down slope. The dynamics filter can generate a physically feasible walking motion on a
different environment.

Figure 6: A walking motion on a down slope generated by the dynamics filter

Intuitive interface for generating whole-body motions Inverse kinematics is frequently
used in robot motion planning as well as CG animation to compute the joint angles that
realizes the given end-effector position. Most of the existing methods, however, are lim-
ited to 6 DOF arms or only consider a single arm or leg. It is still difficult to generate
whole-body motions of human figures. In this research, we extended the conventional
inverse kinematics algorithm to handle the whole-body simultaneously and enabled the
whole-body motion generation by only one pin-and-drag operation. We also included
joint motion range and desired joint angle constraints to yield natural motions without
tweaking the parameters.



Summary of the algorithm The proposed algorithm takes the trajectory of the drag
link and computes a whole-body motion that satisfies the following constraints:

1. fix the positions of any number of pinned links,

2. every joint do not exceed its motion range, and

3. the joint value of every joint becomes as close as possible to the desired value.

The trajectory of the drag link can be specified by any device such as mouse or joystick.
As shown in the next section, the markers measured by motion capture system can be
used as multiple drag links.

The same algorithm can also be used for realtime editing of existing motions by vary-
ing the positions of the pinned links instead of using fixed values. In walking motion,
for example, we can modify the arm motion by dragging the hand link with the both feet
pinned.

Equations The algorithm is composed of the following four steps:

1. Compute the Jacobian matrix of the position of the drag link with respect to the joint
angles, JP , and obtain the joint angles that realizes the given drag link velocity �rrefP

by

�� � J �
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�
PJP �y (6)

where J �
P is the weighted pseudo inverse of JP , E is the identity matrix, and y is

an arbitrary vector. Eq.(6) is simplified as

�� � ��� �Wy� (7)

2. Compute the desired velocity of the constraints �pdaux from the current and ideal
status. For a pinned link, for example, the desired velocity �rdF i is computed from
the current position rFi and the pinned position rrefF i as

�rdF i �KFi�r
ref
F i � rFi� (8)

where KFi is a positive-definite gain matrix. If there are joints out of their motion
range, we also set a desire velocity for each of them such that the joint value returns
to its motion range.

3. Compute the Jacobian matrix of the constraints with respect to the joint values,
Jaux, which is defined as

�paux � Jaux
��� (9)

For a pinned link, for example, we include the Jacobian matrix of its position with
respect to the joint angles.



4. Compute the joint velocity described as Eq.(6) that realizes the desired velocity
�pdaux as much as possible. First we substitute Eq.(7) into Eq.(9) to yield

�paux � Jaux
��� � JauxWy� (10)

Eq.(10) is written as

Sy � � �paux (11)

where S � JauxW and ��paux � �pdaux � Jaux
���. We solve this equation by the

singularity-robust inverse (SR-inverse) [2] as

y � S���paux (12)

whereS� denotes the SR-inverse ofS. Normal inverse is not sufficient here because
generally S is not a full-rank matrix. Finally, the joint velocity is computed by
substituting y into Eq.(7).

The proposed algorithm has the following properties:

� A single pin-and-drag operation moves the whole body.

� Any link can be pinned or dragged, even if it is not an end effector.

� Any number of links can be pinned.

� The pinned and drag links can be switched at any time.

� We never encounter unnaturally large joint velocities even when the constraints
conflict with each others thanks to the SR-inverse.

� We can adjust the movability of the joints and the priorities of the constraints by
changing the weights for computing the weighted pseudo inverse.

� The motion is generated in real time on normal PC.

Example The algorithm is implemented as the computational engine of AnimaniumTM

developed by Sega Corporation for creating CG animation. The software package is
equipped with the interface for switching pinned and drag links and setting the param-
eters.

Figure 7 shows the motion generated by a single drag operation on the right hand
while the toes, heels, and the left hand are pinned.

Behavior capture system The behavior capture system was developed by connecting
various measurement tools with our original motion capture system.



Figure 7: An example of motion generated by a single pin-and-drag operation

Table 2: Cameras used in the motion capture system
name number resolution rate (frame/sec)

Adimec1000 10 1000�1000 30–50
Dalsa 8 512�512 252

Motion capture system We adopted passive optical motion capture considering its
expandability and potential speed. The monochrome cameras detect the positions of the
retro-reflective markers attached to the subject, which are then reconstructed to compute
their Cartesian positions.

The system overview is shown in Figure 8. Each camera sends the image data to a
PC which processes the image to detect the markers in parallel. The reconstruction PC
receives the 2D position data from all camera PC’s and computes the Cartesian positions
of the markers. The PC’s are connected via Myrinet to minimize the overhead due to
inter-process communications. The user can select appropriate cameras listed in Table 2
according to the velocity and required precision of the target motion.

Labeling is the largest technical problem in passive optical motion capture. Labeling
is the process to identify the correspondence between the detected markers and the given
marker set. We developed an algorithm utilizing asymmetric marker placements which is
capable to label the markers in real time. The motion in Figure 9 was capture in real time
using this technique.

We also apply the inverse kinematics algorithm described in the previous section to
compute the joint angles from marker positions. Our flexible algorithm enables the con-
version from capture data with any number of markers to joint data of any model.

Behavior capture system The behavior capture system was integrated by connect-
ing the following devices with the motion capture system:

� force plate to measure the force between the subject and the floor,

� eye-mark recorder to detect the direction of the gaze,

� hybrid magnetic-ultrasonic motion tracker (IS600) to measure the 3D position and
orientation of a link, and

� electro-myograph (EMG) to measure the muscle activity.

The program to obtain the data from each device, including the motion capture system,
is implemented as a CORBA server, so that the user can connect to the devices via the
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Figure 8: Overview of the motion capture system

network by a client program. Figure 10 visualizes the result of simultaneous measurement
using the force plate, the eye-mark recorder, IS600, and the motion capture system.

Dynamics computation of musculoskeletal human model

Musculoskeletal human model We constructed a musculoskeletal human model
shown in Figure 11. This model is composed of 51 bone groups, 366 muscles, 91 tendons,
and 34 ligaments, and has 155 DOF. Each muscle, tendon, or ligament is modeled as a
wire with a linear actuator. Branched muscles such as M. Biceps Bracii are modeled using
virtual links as shown in Figure 12.

Inverse dynamics Inverse dynamics can compute the forces to drive the muscles
to realize a captured motion sequence as well as the somatosensory information such as
the forces applied to the bones or the tendons. The inverse dynamics of musculoskeletal
models is formulated as follows:

� � JTf (13)

where � is the joint torques computed by the inverse dynamics computation of kine-
matic chains, f is the muscle force vector, J is the Jacobian matrix of the muscle length
with respect to the joint angles. In most cases, Eq.(13) is a redundant equation with in-
finite number of solutions because the number of muscles is greater than the DOF. We



Figure 9: Realtime motion capture using asymmetric marker placements

developed two algorithms to solve Eq.(13) using linear programming and quadratic pro-
gramming that minimizes the total muscle force. Figure 13 visualizes the result of inverse
dynamics computation for a kick motion. The color of muscles changes from yellow to
red as their force increase.

Mapping from human figure to musculoskeletal model Musculoskeletal human
model is a complex system with many number of DOF. It is therefore very difficult to
generate and control its motion. If we could find a way to map motions of humanoid to
those of musculoskeletal model, it would be possible to apply the techniques for humanoid
to musculoskeletal models.

We describe the mapping function by polynomials as follows:

� �Mf��� (14)

� �Ng��� (15)

where � is the joint angle vector of the musculoskeletal model, � is the joint angle vector
of the human figure, and f��� and g��� are the terms of the polynomial functions of � and
�, respectively. M andN are the mapping matrix between the two models. We compute
the mapping matrices from several sample configurations using pseudo inverse based on
singular value decomposition. We can modify the degree of adjustment by changing the
number of singular values for computing the pseudo inverse. Figure 14 shows several
pairs of postures generated using the mapping function. The left three postures were used
to compute the mapping function, while the right three were not. The number indicates the
number of singular values used for the pseudo inverse. Although increasing the number



Figure 10: An example of simultaneous measurement using behavior capture system

Figure 11: Musculoskeletal human model

of singular values generally improves the approximation, it is not good for postures not
included in the samples because smaller singular values may represent the feature of the
sample postures rather than the structural difference.

(2) Results and their importance

In this research, we developed the following methods and systems:

� Parallel efficient dynamics computation of human figures: This method not only
serves as the basis for motion generation considering dynamics, but also improves
the efficiency of the computations of simulating and controlling motions of hu-
manoids.

� Motion generation of human figures considering physical consistency: This method,
called dynamics filter, can generated motions that are both physically consistent and



Figure 12: Model of M. Biceps Bracii with a virtual link

Figure 13: Inverse dynamics computation of musculoskeletal model

human-like by modifying motion capture data.

� Intuitive motion generation using inverse kinematics: This method is capable of
generating whole-body motions of human figures by only specifying several fixed
links and the trajectory of a link. This is enabled by extending conventional algo-
rithm for inverse kinematics.

� Behavior capture system: We combined our original motion capture system with
other sensors including force plate and gaze direction sensor.

� Dynamics computation of musculoskeletal human model: We can compute the so-
matosensory information by developing the methods for computing the dynamics
of human model composed of bones, muscles, and tendons.

The techniques for dynamics simulation, motion generation, and motion / sensory in-
formation measurement for human figures developed in research would serve as the basis
for humanoid and cognitive science. In fact, some of these techniques have been adopted
by other research groups in the project. Some are also applied to software packages for
humanoid simulators and CG animation.



Figure 14: Mapping from human figure to musculoskeletal model

The extension to musculoskeletal human model would have applications beyond hu-
manoids. Potential applications include investigation of human motion control mecha-
nism using somatosensory information, development of new human-robot interface, and
applications to medical and sport science.
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