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Abstract

Visual attention is one of the most important issues
for a vision guided mobile robot. Methods have been
proposed for visual attention control based on infor-
mation criterion[3, 4]. However, the robot had to
stop walking for observation and decision. This paper
presents a method which enables observation and de-
cision more efficiently and adaptively while it is walk-
ing. The method uses the expected information gain
from future observations for attention control and ac-
tion decision. It also proposes an image compensa-
tion method to handle the image changes due to the
robot motion. Both are used to estimate observation
probabilities from the observation while it is walking
and then action probabilities are estimated from a de-
cision tree based on the information criterion. The
method is applied to a four legged robot. Discussions
on the visual attention control in the method and the
future issues are given.

1 Introduction

Mobile robots are often equipped with visual sen-
sors that bring a huge amount of data about the en-
vironment. For efficient decision making, attention
control which extracts necessary and sufficient infor-
mation for the given task is necessary. Gaze control
is the one of most important attention control for
a robot equipped with a limited view angle camera
since the decision making is highly depends on it. We
have proposed a method of efficient observation for
decision making with gaze control based on informa-
tion criterion [3, 4]. However, the methods assumed
a stop-observation-act approach. To make decisions
much more efficiently, observation while it is taking
some action, for example walking, has been desired.

To use observations while it is walking, the following
issues arises, 1) there are much more disturbances to
such observation than the stop-and-observe one, 2)
it may move too much between gaze changes to re-
gard the observation is done at the same location or

it must consider where the observation is done, 3) it
should stop walking or slow down the motion when it
cannot make any decisions. Kosaka et al.[2] have pro-
posed retroactive updating of position uncertainty to
handle the second problem. Moon et al.[5] have pro-
posed a view point planning considering the second
and the third problems for navigation tasks. Bur-
gard et al.[1] proposed a Markov localization method
which determines which direction to move for local-
ization. However, their method have not considered
the second nor the third problem. Also main pur-
pose of all these methods was for localization and
efficiency of observation was considered from a view
point of localization only. Further, they assumed the
wheeled mobile robots of which observation is rather
stable and therefore ignored the first problem.

In this paper, we propose a method of image compen-
sation mechanism for decision making to handle the
first and the second problems. Further, we propose
to use the expected information gain as a reliability
measure for third problem. Action decision is done
by a decision tree constructed by information crite-
rion based on the training data.

The rest of the paper is organized as follows. First,
the method to construct action decision tree is intro-
duced along with basic ideas related to the informa-
tion criterion, the efficient observation, and the de-
cision making. Also the expected information gain
as a reliability measure is introduced. Then, the
compensation method for image changes by walk-
ing is proposed, and the experimental results using
the RoboCup four-legged robot league platform are
shown. Finally, discussion and the future issues are
shown.

2 The method

2.1 Assumptions

In our experiments, the robot has to pan and tilt
its camera to acquire the necessary information for
action selection since the visual field of the camera



is limited. The environment includes several land-
marks of which appearances provide the robot with
sufficient information to uniquely determine the ac-
tion. Training data are given for making decisions.

We used a teaching method to collect such data. A
training datum consists of a set of the views of the
landmarks at the current position and the action to
accomplish the task. During the training period, the
robot pans and tilts its camera head to observe as
many landmarks as possible. The robot stops its leg
motions while rotating the head to guarantee that
the landmarks are observed from the same location.
We separately prepare image data for image compen-
sation of locomotion and image shakes by walking.

2.2 Information gain by observation

Suppose we have r kinds of actions and n training
data. First, the occurrence probabilities of actions pj

(j = 1, ..., r) are calculated from pj = nj/n , where
nj denotes the number of taken action j. Therefore,
the entropy H0 for the action probability is given by

H0 = −
r∑

j=1

pj log2 pj . (1)

Next, the occurrence probabilities of actions after ob-
servation are calculated. After the observation, it
knows whether the landmark is inside the attention
window (θLk, θUk] or not. We denote the number of
times action j was taken as nI

ijk when the landmark
i was observed in (θLk, θUk] and nO

ijk when not ob-
served. Then, the occurrence probability becomes,

pI,O
ikj = nI,O

ikj /nI,O
ik , (2)

where nI
ik =

∑r
j nI

ikj , and nO
ik =

∑r
j nO

ikj . Next,
the entropy after the observation are calculated as
follows:

Hik = −
∑

x={I,O}

nx
ik

nik

r∑

j=1

(px
ikj log2 px

ikj). (3)

The information gain by this observation Iik is
H0 − Hik. The larger Ii is, the smaller the un-
certainty after the observation is.

When the time for observation is constant, we can
use the information gain to make action decision tree.
However, the time for observation changes depending
on the gaze directions. Therefore, we use the infor-
mation gain per time, in other words the velocity,
rather than information gain itself.

We denote T as the time to get the observation after
previous one, and the information gain per time iik
is,

iik =
Iik

T + TC
=

H0 −Hik

T + TC
, (4)
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Figure 1: An example action decision tree.

where TC is a positive constant. When the direction
is already observed T = 0. To keep simplicity, we
limit pan and tilt angles into several discrete values
and the robot select an observing direction nearest
to the attention window from them.

2.3 Making an action decision tree

To make an action decision tree, 1) we calculate each
information gain per time iik for action after observ-
ing a window k of landmark i, and 2) divide the
data set according to the attention window with the
largest information gain per time. We iterate these
processes until the information gains for all windows
become zero or the action in the subset of the train-
ing data becomes unique. In the action decision tree,
a node, an arc, and a leaf indicate the window to di-
vide the data set, whether the landmark is observed
in the window, and the action to be taken, respec-
tively. As a result attention windows are in decreas-
ing order of uncertainty after its observation.

2.4 Making a decision

In order to make an action decision, first, the robot
sets the observation probabilities to attention win-
dows of the currently or previously observed direc-
tions, and 0.5 to windows of never observed direc-
tions. Then it calculates action probabilities using
the observation probabilities. An action probability
is the sum of the probability to reach leaves to take
the action in the tree. If one of the action probabil-
ities is very high, that action would be the correct
one. However, in some cases it is dangerous to use
action probabilities only. For example, in the action
decision tree of Figure 1, the action probability of C
is 0.5 before any observation is done.

Here, we propose to use an expected information gain
as a measure of reliability. We define total expected
information gain as,

−
∑

all node

(
nnode

n
)Inode{p log2 p + (1− p) log2(1− p)},

(5)



standing | walking
|------------|---|---|---|---|---|---|--

A B C D E F G

Figure 2: A time sequence example. At time A, it
starts walking. A, B, C,... are the beginning of a
walking period.

where nnode is the number of training data that this
node has and Inode is the expected information gain
which is calculated in building the tree, and p is
the probability that the landmark is in the atten-
tion window of the node. Since the entropy of p,
p log2 p + (1− p) log2(1− p) ranges from 0 to 1, and
it becomes 1 when the p = 0.5 or mostly ambiguous,
we use this as the reliability measure.

When the total expected information gain is smaller
than the threshold and one of the action probability
is over the threshold, it takes that action. Then, it
observes the direction of the largest expected infor-
mation gain while it is taking the action. Otherwise,
until one of them becomes high enough, it stops walk-
ing and continues to check the direction of the largest
expected information gain, updates the observation
probability, and the action probabilities.

2.5 Image compensation

We need some kind of compensation mechanism to
make decisions by using the action decision tree built
by statically taken images. First, it should com-
pensate for locomotion which is common for both
wheeled and legged robots. Second, it should com-
pensate for the shaking motion by its walking, that
can be ignored by wheeled and slowly moving legged
robots. Compensation of camera images for walk-
ing is necessary for dynamic walking robots. While
it may possible to compensate the camera move-
ment by active or passive control, high speed feed-
back or complicated mechanism are needed. Another
method is to compensate the image after it has been
taken. With this, we do not need precise control to
compensate its walking. We take this approach.

To compensate the above two, we calculate the com-
pensation values from images taken by the walking
sequences (Figure 2). At first, the robot is standing
still, at time A it starts walking, and time B is the
beginning of the second walking period.

We denote the time of A, B, C,... as tA, tB , tC ,...,
and, the camera image at time t as Ut. At the begin-
ning of the walking periods, for example, the differ-
ence between UtA+i and UtB+i includes the effect of
both the shaking due to the beginning of the walk-
ing and locomotion. When it walks regularly, for ex-
ample, the difference between UtF +i and UtG+i only

includes the effect of locomotion. Here we define the
difference of images by,

Diff(i, j,4x,4y) =
∑

{ui(x, y)−uj(x−4x, y−4y)}2,
(6)

where ui(x, y) denotes the value of the pixel at
the point (x, y) in image Ui. We calculate and
find the (4 x(t),4 y(t))T which makes the small-
est Diff(t, t + 1, 4 x, 4 y) for each t.
(4 x(t),4 y(t))T is the movement of camera in the
image coordinate. The movement of the camera in
one walking period is,

t+W∑

j=t

(4x(j),4y(j))T , (7)

where, W is the walking period and t is the time in
the period of regular walking. We calculate the mean
x̂L and the variance σL of the movement. The x̂L

and σL indicates the mean and the variance of the
its locomotion in the camera coordinate.

The difference of the images between in standing still
and in walking includes the effect of shaking and lo-
comotion. So the effect of shaking at time t calcu-
lated by subtracting the effect of locomotion,

t∑

j=0

(4x(j),4y(j))T − (t− tk)x̂L

W
, (8)

where tk is the beginning of the walking period which
includes t. We calculate the mean x̂S(θ) and the
variance σS(θ) of this effect for each walking phase
θ.

We use x̂L, σL, x̂S(θ), and σS(θ) for the calculation
of observation probabilities. When a landmark i is
observed in x at time t1, the mean and variance of
the landmark location in image at time t is,

x̄(t) = x + x̂S(θt1) +
(t− t1)x̂L

W
, (9)

σ̄(t) = σS(θt1) +
(t− t1)σL

W
, (10)

where θt1 is the walking phase at t1. We use the
ratio of the area made by x̄(t)− σ̄(t) and x̄(t) + σ̄(t)
and the area which is overlapped by the attention
window on this area as the observation probability.

3 Experiments

3.1 Task and Environment

We used a legged robot with a limited view angle for
the RoboCup SONY legged robot league (Figure 3).
We used the half of the field, there are 4 landmark
poles, a goal, and a ball. All the landmarks and the
ball are distinguished by their colors. The task is to



Figure 3: The SONY legged robot for the RoboCup
SONY legged robot league.

Figure 4: Experimental field (same as the one for
the RoboCup SONY legged robot league).

move to the position where the ball and the goal are
in line based on the visual information. The robot
must avoid obstacle which is not distinguishable by
its color.

The view angle (number of image pixels) of the
robot’s camera are about 58 degrees (88 pixels) in
width, and about 48 degrees (72 pixels) in height.
Each leg and the neck have three degrees of freedom.
The robot can rotate the pan joint from -88 to 88 de-
grees and the tilt joint from -80 to 43 degrees. The
maximum frame rate of the camera is 40[ms]. We
prepared three actions, move forward, left forward,
right forward. These actions are based on trot gait
and were developed without consideration for image
shaking.

As vision sensors, we used the coordinates of the im-
age centers of the landmarks and the ball, the min-
imum and maximum x, y coordinates (totally four)
of the goals. We used a pair of the pan (x) and
the tilt (y) angles as a sensor value, or we divided
training data set by the observation to check whether
a sensor value is in the rectangle attention window
(xmin, ymin)− (xmax, ymax) or not.

3.2 Image compensation

Figure 5 shows the images while the robot is watch-
ing the front direction and doing forward motion.
The images are taken every 80[ms] and the walking
period is 600[ms]. Figure 6 shows the 4y of three
trials of forward motions. We can see high jumps in
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Figure 6: The 4y of forward motion.

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10 12 14

[p
ix

el
s]

x40[ms]

xs
ys

sigma xs
sigma ys

Figure 7: The x̂S, and σS of the forward motion
watching at front direction.

every walking periods. Figures 7, 8, and 9 show the
x̂S , and σS of the forward, right forward, and left
forward actions watching at front direction.

3.3 Experimental results

We trained the robot starting from one of three po-
sitions in the middle of the field. We prepared five
directions (every 44 degrees) in the pan joint and
five directions (every 21 degrees) in the tilt joint to
observe. In order to guarantee that it can observe
same view angles by observing one direction in spite
of the shaking motions, we narrowed the angles than
camera’s field of view.

We obtained 239 training data and constructed a
action decision tree. Figure 10 shows the atten-
tion windows generated with proposed method. Fig-
ures 11,12, and 13 show the changes of expected in-
formation gain and the maximum action probabil-
ity when the robot took actions beginning from the
center of the field based on the constructed action
decision tree.

Figure 11 shows the result when action probability
threshold was 0.4 and the information gain threshold



Figure 5: The images of the camera while the robot is moving forward. The images are taken every 80[ms].
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Figure 8: The x̂S, and σS of the right forward mo-
tion watching at front direction.
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Figure 9: The x̂S, and σS of the left forward mo-
tion watching at front direction.

was not used. The time the robot reached to the goal
position was shorter and the frequency of standing up
for observation was lower. However the robot ignored
the obstacle so the task has not been completed.

Figure 12 shows the result when action probability
threshold was 0.9 and the information gain threshold
was not used. We tried with the threshold 0.7 and
0.8 and it tried to avoid the obstacle but it hit to
the obstacle. With the threshold 0.9 it avoided the
obstacle and reached to the goal position. However,
it frequently stand up for observation.

Figure 13 shows the result when action probability
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Figure 10: Created attention windows by proposed
method.

threshold was 0.4 and the information gain thresh-
old was 0.3. It shows that by using the information
gain threshold, the frequency of standing up for ob-
servation is higher than without the threshold and
lower than high action probability threshold. And
the robot reached to the goal position avoiding the
obstacle. This shows the validity of the information
gain threshold.

4 Discussions and conclusions

Currently, training data should cover the case of sen-
sor noises or of occlusions in order to handle these
cases, then we may need large training data. A
method which can find robustness of observation may
be desired. We have to determine the TC for calcula-
tion of information gain per time, and two thresholds
for maximum action probability and expected infor-
mation gain for each task. These parameter should
be studied.

We proposed a visual attention control for a legged
mobile robot. It consisted of a decision tree con-
structed by information gain by time and the com-
pensation mechanism for walking and locomotion.
We introduced the expected information gain as a
measure of reliability of decision. Attention control
is done by observing the direction which has largest
expected information gain calculated with the deci-
sion tree. The validity of the method was shown with
reaching task by a four legged robot.
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Figure 11: Changes of expected information gain,
the maximum action probability, actions which had
maximum action probabilities, and which was taken
by the robot. The starting point of robot was the cen-
ter of the field. The action probability threshold was
0.4 and the information gain threshold was not used.
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Figure 12: Changes when the starting point of robot
was the center of the field. The action probability
threshold was 0.9 and the information gain threshold
was not used.
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Figure 13: Changes when the starting point of robot
was the center of the field. The action probability
threshold was 0.4 and the information gain threshold
was 0.3.


