
View-based Imitation with Rotation Invariant
Pan-Tilt Stereo Cameras

Yuichiro Yoshikawa∗, Yoshiki Tsuji∗, Minoru Asada∗†, and Koh Hosoda∗†

∗Dept. of Adaptive Machine Systems, †HANDAI Frontier Research Center,
Graduate School of Engineering, Osaka University.

{yoshikawa,tsuji,asada,hosoda}@er.ams.eng.osaka-u.ac.jp

Abstract

In the previous work, we have developed a method
for visual imitation by recovering the demonstrator’s
view based on the stereo epipolar constraint [1]. The
method is applied to the stationary pair of the stereo
cameras, therefore, the visual fields to observe the
both motions of the demonstrator and the learner are
limited. This paper presents a method to extend our
previous work by adopting a pair of rotation invariant
stereo cameras that has pan and tilt motions with-
out changing the optical center, therefore, the stereo
epipolar equation does not change. The spherical
projection is used to represent the constraint. The
experimental results are shown.

1 Introduction

Imitation is one of the most important capability for
an intelligent robot to perform a variety of compli-
cated tasks in the real world because learning by im-
itation is regarded as a promising way to accelerate
the learning of a robot which has different sensory
modalities and many degrees of freedoms such as a
humanoid robot [2, 3]. Another aspect of the imi-
tation capability is that it is also one of the most
interesting cognitive issues to model how we human
beings learn to acquire various kinds of behaviors by
building real robots capable of imitation learning [4].

Most of the existing robotic approaches assume an
observation capability by which the robot knows the
demonstrator’s internal states such as joint angles
since they have focused on how to encode the se-
quence of them. The assumptions are held by the
module of behavior recognition [5], a motion capture
system [6, 7], a sensor-suit attached on the demon-
strator’s body [8], the coordinate transformation [9],
and so on. However, these solutions seem unnatu-
ral for a real, autonomous robot because they need
the calibration process by the designer. Instead, it is
an interesting issue how to acquire such a capability
from its sensory information by itself.

Asada et al. [1] proposed one of the view-based imi-
tation methods which consists of two parts, the view
transformation to recover the demonstrator’s view
and the adaptive visual servoing [10] to follow the
recovered trajectory of the demonstration. However,
the learner is not allowed to move its camera when
it observes the demonstration or its body, because
it utilizes opt-geometric constraint between image
planes, called epipolar geometry [11]. Therefore, in
order to perform imitation, the both motions of the
demonstrator and the learner are limited.

This paper presents a method to cope with the case
that it needs to move its cameras to capture the both
motions of the demonstrator and the learner. In or-
der to begin with easier case of imitation, we assume
that the both body structures are the same as well as
the previous work [1]. We adopt a pair of the rota-
tion invariant stereo cameras each of which has pan
and tilt motions without changing its optical center
since epipolar geometry between them is invariant if
their optical center are fixed. We call this property
rotation invariant. In this case, we can apply the
spherical projection to the invariant representation
of epipolar geometry for such rotations. According
to epipolar geometry, we derive the method how to
find the spherical image coordinates in the virtual
view, called the view transformation.

The rest of paper is organized as follow: first a mech-
anism of the view transformation is described, and
the method of demonstrator’s view recovery is given.
In order to confirm the validity of the method, at
first, the computer simulation is given. Then, the
camera system to hold the assumption of optical cen-
ter invariance is built and the real robot experiment
is shown.

2 View transformation among image
spheres

Suppose that the attentional point in the three di-
mensional space projects onto two image spheres and



their coordinates are given. When we add one more
image sphere, we propose a method of the view trans-
formation by which we find the coordinate of the
matched point in the newly added image sphere in
this section. In order to allow the extension of the
visible region by rotating the cameras, we assume
the rotation invariant motion and adopt spherical
images.

2.1 Epipolar geometry

Image sphere is a spherical image surface of which
center coincides with the optical center, and sphere
projection is the projection where the attentional
point in the three dimensional space is projected onto
the intersection between the image sphere and a line
which contains it and the optical center. Here, the
camera coordinate system of a spherical projection
is the three dimensional coordinate system fixed on
the optical center.

When a 3D point is projected on two image spheres,
the point, the projected 3D points, and the opti-
cal centers are on one plane, called epipolar plane
(see Fig. 1). The opt-geometric constraint is called
epipolar geometry , and it is described in the epipolar
equation, such as,

lxT lrErx = 0, (1)

where lx and rx are the coordinates of the projected
points in the image sphere [l] and [r], respectively.
lrE ∈ <3×3 is called essential matrix determined by
the geometrical relationship between two camera co-
ordinate systems.
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Figure 1: Epipolar geometry between two image
spheres.

If we have more than eight coordinates of the
matched projected points, the essential matrix can

be estimated by solving the simultaneous equation
of eq. (1) based on the least square method [11].

2.2 View translation based on epipolar ge-
ometry

We add one more camera [LD] ([RD]) observing a
point which is also observed in [l] and [r] (see Fig.
2). The problem is how to find the corresponding
points in the view [LD] ([RD]) with ones in the views
[l] and [r].

Based on the epipolar geometry, the matched points
LDx (RDx) for lx is constrained to lie on the epipolar
plane, and simultaneously on the image sphere [LD]
([RD]). Therefore, it is constrained to the great cir-
cle on [LD] ([RD]) which is the intersection of them.
Since it is also constrained on another great circle
which is derived from epipolar geometry between [r]
and [LD] ([RD]), it is determined by finding the in-
tersection of two great circles.

We can determine it by solving following simultane-
ous equations, such as

lxT lLDELDx = 0, (2)
rxT rLDELDx = 0, (3)

LDxT LDx = c2, (4)

where the first and the second ones represent epipo-
lar planes on which LDx is constrained, the last one
represents the condition that LDx is on the image
sphere, and c is arbitrary positive value which indi-
cates radius of the image sphere. RDx can also be
determined in a similar manner.
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Figure 2: The mechanism of the view transforma-
tion based on epipolar geometry.

Summing up, LDx (RDx) is determined by the func-
tion, such as

LDx = f(lx, rx, lLDE, rLDE) (5)
(RDx = f(lx, rx, lRDE, rRDE)). (6)



It means that the matched point in the unknown im-
age sphere can be determined if the projected points
in the known image spheres and the essential matri-
ces of epipolar geometry between them are given.

3 Demonstrator’s view recovery [1]

In this section, the method of recovering the demon-
strator’s view to imitate its motion using the view
transformation is given.

In order to avoid a difficult issue on the definition of
imitation, we deal with the case that the learner and
the demonstrator have the same body structure be-
cause such an assumption gives us a simple definition
of imitation such as reproducing the same trajecto-
ries of the body parts in the three dimensional space.
Practically, we assume that the link parameters and
the camera one are the same. In such a case, if the
learner knows the trajectories of the demonstrator’s
body parts in the demonstrator’s view, it can per-
form imitation by realizing the same trajectory by
its matched body parts.

Fig. 3 shows the relationship between the views
of the demonstrator and the learner, where V A

O in-
dicates the view of agent O observing the motion
of acting agent A (A, O: the demonstrator or the
learner). The learner needs to recover the demon-
strator’s views, V D

D ([LD] and [RD]) by which the
demonstrator is supposed to observe itself during
the demonstration, from observed information in the
learner’s views, V D

L ([LD] and [RD]). If essential
matrices of epipolar geometry between V D

L and V D
D

are given, the learner can find the trajectories of
the demonstrator’s body parts in V D

D by the view
transformation explained in the previous section. Af-
ter finding them, the learner can perform imitation
through the control to follow them by the adaptive
visual servoing [10]. However, how to know the es-
sential matrices is still a question.

3.1 Estimation of the essential matrices

The learner needs to estimate the essential matrices,
lLDE, rLDE,lRDE, rRDE, of epipolar geometry be-
tween V D

L and V D
D . As mentioned in the previous

section, more than eight pairs of the corresponding
projected points are needed to estimate the essential
matrices [11]. However, the learner does not know
directly the corresponding point in V D

D .

Suppose that the demonstrator’s initial posture
(joint angles) is the same as the learner’s one. Since
it is assumed that the learner has the same body
structure and the same camera parameters as the
demonstrator does, the learner’s body parts pro-
jected on V L

L is the completely same as the demon-
strator’s one in V D

D (see Fig. 4). Therefore, instead
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Figure 3: Demonstrator’s view recovery.

of using points in unobservable view V D
D , the es-

sential matrices can be estimated by using observed
points which are considered to correspond ones in
V L

L .

[R]

[L]

[R  ]D

[L  ]D

L
ii

LD

i
DR

i
R

congruent

The same link parameters

The same camera parameters

The learner’s views
when it imitates
(known views).

The demonstrator’s views
when it demonstrates
(unknown views).

L
LVVD

D

L
i

i
R

i
LD

i
DR

=
=

x

x

x

x

x x

x x

Figure 4: The key idea of the method of the param-
eter estimation.

When we define Lxi and Rxi as the i-th projected
point on the learner’s body in V L

L , as well as LDxi and
RDxi as the corresponding one on the demonstrator’s
body in V D

D , they satisfy the following equations,
such as

pLDxi = Lxi,
RDxi = Rxi. (7)

It means that the learner can use Lxi and Rxi as
alternativeness of LDxi and RDxi to estimate the es-
sential matrices.



In order to release the assumption that both postures
are the same, the method to estimate the essential
matrices by the control of its joint angles to mini-
mize the error of view transformation using currently
estimated essential matrices has been proposed [12]
although it is a method when the learner uses the
no-spherical image planes.

4 Experiment using the computer simu-
lation

In order to confirm the validity of the view transfor-
mation, experimental result in the computer simula-
tion is shown in this section.

We create the four image spheres, [l],[r],[LD], and
[RD], in the computer. Setting 64 points as the at-
tentional point in the three dimensional space, we
calculate the projected points of them in each im-
age sphere. The residuals in the estimation of the
essential matrices are shown (see Tab. 1).

Table 1: The residuals in the estimation of the es-
sential matrices in the computer simulation.

essential matrices residual of estimation
lLDE 1.8 ×10−19

rLDE 2.6 ×10−19

lRDE 4.1 ×10−19

rRDE 5.8 ×10−19

The matched points in [LD] and [RD] with ones in [l]
and [r] is recovered by the view transformation using
the estimated essential matrices (see Fig. 5). Fig. 5
shows the recovered points (dots) as well as the true
ones (cubes) in the image sphere [RD]. Since they
almost coincide with each other, the matched points
can be recovered by the view transformation.

Figure 5: The result of the view transformation.

5 Experiment using the real robot

In order to confirm whether the demonstrator’s view
can be recovered by the proposed method, the ex-
perimental result using the real robot is shown in
this section. In the experiment, two identical ma-
nipulators are supposed to be the learner’s and the
demonstrator’s body (see Fig. 6).

The demonstratorThe learner

manipulator manipulator

stereo
cameras

Figure 6: The learner and the demonstrator have
identical manipulators as their bodies.

5.1 Rotation invariant camera head

We use a pair of stereo camera heads each of which
consists of three helical gears to realize camera ro-
tation in which the optical center is invariant (see
Fig. 7). First, the torques of the two motors are
transmitted to the upper helical gears which have
the same radius by the belts. Then, the lower helical
gear as the stage of the CCD camera is driven. The
rotation center of the stage is the intersection of the
rotational axes of three helical gears. It is designed
so as to coincide the optical center of CCD camera
with the rotation center. The rotation angles (pan
and tilt) are calculated by following function, such
as

pan = r/R · (θ1 − θ2), (8)
tilt = θ1 + θ2, (9)

where θ1 and θ2 are the angles of the upper helical
gears, and r and R are radius of upper ones and lower
one, respectively.

Although it is designed to have the rotation invari-
ance of the optical center, it is not guaranteed be-
cause the CCD camera is attached to the stage by
hand.

5.2 Experimental setup

The detail of the experimental setup is shown in Fig.
8. We use two identical 7 DOFs manipulators (PA10,
MHI) as the bodies of the learner and the demonstra-
tor, and two sets of pan-tilt camera heads mentioned
above as the learner’s. In this experiment, we use



Figure 7: The pan-tilt camera.
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Figure 8: Experimental setup

the three axes of the manipulator and the remaining
axes are fixed.

The image streams from two CCD cameras are com-
bined to one (image size: 640[pixel] × 480[pixel]) by
compressing each images into the half along the ver-
tical axis (640[pixel] × 240[pixel]) in the field multi-
plexer, and then sent to a tracking module equipped
with a high-speed correlation processor based on
SAD (Sum of Absolute Difference) manufactured by
Fujitsu. Before starting an experiment, we specify
target images to be tracked by the module. The CPU
(VxWorks, WindRiver) calculates and outputs con-
trol signals to the each controller of the manipulator
and the camera heads.

5.3 Projection to image sphere

In order to utilize the image sphere, the learner
should have a mapping from the image plane to it.
Since the optical center coincides with the rotation
center, the angles (pan and tilt) of the camera stage
correspond to the angles of the polar coordinate sys-

tem. Therefore, it can acquire the mapping through
the experience of focusing the attentional point in
the image plane, that is rotating the camera stage so
as to capture it at the center of the image plane.

We gave 100 feature points in the three dimensional
space and let the learner gaze them. Using the data
in the focusing experiences, a feed-forward neural
network which has one hidden layer with three units
learns the mapping from the coordinate of the pro-
jected features in the image plane to the angles of
the camera stage by the backpropagation method.
The learning curve of the mapping is shown in Fig.
9, where it is confirmed that the learner acquire the
mapping since the squared error is sufficiently small.
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Figure 9: Learning curve: squared error of the map-
ping from image plane to image sphere.

5.4 Recovering the demonstration observed
in the demonstrator’s view

In order to confirm the validity of the method to
imitate, the demonstrator shows the motion in which
a triangle is drawn by its end-effector, and the learner
recovers the trajectory observed by the demonstrator
in the learner’s view. Given 79 points in the three
dimensional space, the residuals in the estimation of
the essential matrices are shown (see Tab. 2).

Table 2: The residuals in the estimation of the es-
sential matrices in the real robot experiment.

essential matrices residual of estimation
lLDE 1.1 ×10−3

rLDE 8.2 ×10−4

lRDE 1.0 ×10−3

rRDE 5.8 ×10−4

Then, the result of recovering the trajectory of the
demonstrator’s end-effector is shown in Fig. 10,
where the recovered points (dots) as well as the true
ones (cubes) in the image sphere [RD] are shown.
Since they almost coincide with each other, the



matched points are found by the view transforma-
tion, that is the demonstrator’s view is successfully
recovered.

Although it is almost close, it has some errors be-
cause of the residuals in the estimation of the essen-
tial matrices. It may be caused by the fact that the
rotation invariance is not guaranteed in the current
camera head. We plan to provide the camera head
with the mechanism by which we can adjust the po-
sition of the CCD camera and expect to show the
result with less error at the conference.

Figure 10: The trajectory recovered by the view
transformation and the true trajectory measured by
the designer in advance.

6 Conclusion

This paper proposed the extension of the method
to imitate from observation based on demonstrator’s
view recovery. Assuming that the optical centers of
the learner’s stereo cameras are rotation invariant,
the demonstrator’s view is recovered by the view
transformation based on epipolar geometry with the
learner’s one. Therefore, it allows the learner to
move its cameras to extend its visible regions unlike
the previous method.

The validity of the proposed method is confirmed by
the experimental results in the computer simulation
and the real robot experiment. In order to reduce
the recovering errors caused by the residual in the
estimation, we plan to provide the camera head with
a mechanism to adjust.

Although we assume that the demonstrator’s posture
is the same as the learner to estimate the parameters
of epipolar geometry, it should cope with the situa-
tion when they are different. Combining the idea to
estimate in such a situation [12] is one of our future
work.
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