
Sensor Space Segmentation for Visual Attention Control of a Mobile
Robot based on Information Criterion

Noriaki Mitsunaga Minoru Asada

Dept. of Adaptive Machine Systems,

Graduate School of Engineering, Osaka University

Suita, Osaka, 565-0871, Japan

mitchy@er.ams.eng.osaka-u.ac.jp asada@ams.eng.osaka-u.ac.jp

Abstract

Visual attention is one of the most important issues
for a vision guided mobile robot not simply because vi-
sual information bring a huge amount of data but also
because the visual field is limited, therefore gaze con-
trol is necessary. This paper proposes a method of
sensor space segmentation for visual attention control
that enables mobile robots to realize efficient observa-
tion. The efficiency is considered from a viewpoint of
not geometrical reconstruction but unique action se-
lection based on information criterion regardless of lo-
calization uncertainty. The method builds a decision
tree based on the information criterion while taking the
time needed for observation into account, and atten-
tion control is done by following the tree. The tree is
rebuilt by introducing contextual information for more
efficient attention control. The method is applied to
a four legged robot that tries to shoot a ball into the
goal. Discussion on the visual attention control in the
method is given and the future issues are shown.

1 Introduction

Mobile robots are often equipped with visual sen-
sors that bring a huge amount of data about the en-
vironment of which image processing takes time, and
often the visual field is limited. Therefore gaze control
is necessary before changing view directions. Thus, at-
tention control which extracts necessary and sufficient
information for the given task is needed for efficient de-
cision making. We have proposed a method of efficient
observation for decision making [1], which assumed
that the sensor values were quantized in advance and
the time for gaze control and sensory data acquisition
was fixed. Further, the contextual information was not

directly involved into the system. Self-segmentation of
the sensor space and the direct use of the contextual
information seem necessary to realize more adaptive
and efficient attention control.

McCallum[2] has proposed a learning algorithm for
attention control. However, the number of the gaze
directions is just four and the gaze control is rigidly
linked to the moving direction, that is, the system
cannot change its moving directions without changing
gaze directions.

In the reinforcement learning area, the number of
states should be minimized because the learning time
is exponential to the size of state space [3]. Then,
several sensor space segmentation methods for state
space construction have been proposed (Takahashi et
al .[4], Yairi et al. [5], Kamiharako et al. [6], and Noda
et al. [7]). However, they have not considered the
actual time for observation nor used an active vision
system. Kamiharako et al. [6] showed some results us-
ing a coarse to fine attention control but they adopted
the omni-directional vision system by which the robot
does not need to change its view directions.

In this paper, we propose a method of sensor space
segmentation for visual attention control that enables
mobile robots to realize efficient observation. The ef-
ficiency is considered from a viewpoint of not geomet-
rical reconstruction but unique action selection based
on the information criterion regardless of localization
uncertainty. The method builds a decision tree based
on information criterion while taking the time needed
for observation into account, and observation is done
by following the tree. The tree is rebuilt by intro-
ducing the contextual information for more efficient
attention control. The method is applied to a four
legged robot that tries to shoot a ball into the goal.
To build a decision tree, a training set is given by the
designer, and a kind of off-line learning is performed

on the given data set.
The rest of the paper is organized as follows. First,

the method is introduced along with basic ideas re-
lated to the information criterion, the efficient obser-
vation, the contextual information, and the decision
making. Then, the experimental results using the
RoboCup four-legged robot league platform (almost
same as Sony AIBO) are shown. Finally, discussion
on the visual attention control in the method is given
and the future issues are shown.

2 The method

2.1 Assumptions

In our experiments, the robot has to pan and tilt its
camera to acquire the necessary information for action
selection since the visual field of the camera is limited.
The environment includes several landmarks of which
appearances provide the robot with sufficient informa-
tion to uniquely determines the action. Training data
are given for making decisions and predictions.

We used a teaching method to collect such data. A
training datum consists of a set of the views of the
landmarks at the current position and the action to
accomplish the task. During the training period, the
robot pans and tilts its camera head to observe as
many landmarks as possible.

2.2 Decision tree

There are methods which construct a classifier in
the form of decision tree with information gain, such
as ID3 and C4.5 [8]. To construct a decision tree, we
need a training data set. Each datum consists of a
class which it belongs to and its attribute values. In
our experiments, a class and an attribute correspond
to an action and a sensor, respectively. In case of ID3
(which only handles quantized attribute values), 1) we
calculate each information gain Ii for action after ob-
serving sensor i, and 2) divide the data set according
to the sensor values with the largest information gain.
We iterate these processes until the information gains
for all sensors become zero or the action in the subset
of the training data becomes unique. In an action deci-
sion tree, a node, an arc, and a leaf indicate the sensor
to divide the data set, the sensor value, and the action
to be taken, respectively. C4.5 handles continuous at-
tribute values by dividing data set. The threshold to
divide is determined so that the information gain be-
comes the largest after the division.

Due to the limited view angle camera, the robot
needs to change its gazes in order to know whether
a landmark is observed in left of the threshold or
not. However, it needs only one gaze control to know
whether a landmark is observed inside a limited area
(attention window) or not in order to divide the train-
ing set into two subsets and to calculate the informa-
tion gain.

2.3 Information gain by observation

Suppose we have r kinds of actions and n training
data. First, the occurrence probabilities of actions pj

(j = 1, ..., r) are calculated from pj = nj

n , where nj

denotes the number of taken action j. Therefore, the
entropy H0 for the action probability is given by

H0 = −
r∑

j=1

pj log2 pj . (1)

Next, the occurrence probabilities of actions after ob-
servation are calculated. After the observation, it knows
whether the landmark is inside the attention window
(θLk, θUk] or not. We denote the number of times ac-
tion j was taken as nI

ijk when the landmark i was
observed in (θLk, θUk] and nO

ijk when not observed.
Then, the occurrence probability becomes,

pI,O
ikj = nI,O

ikj /nI,O
ik , (2)

where nI
ik =

∑r
j nI

ikj , and nO
ik =

∑r
j nO

ikj . Next, the
entropy after the observation are calculated as follows:

Hik = −
∑

x={I,O}

nx
ik

nik

r∑

j=1

(px
ikj log2 px

ikj). (3)

The information gain by this observation Iik is H0 −
Hik. The larger Ii is, the smaller the uncertainty after
the observation is.

2.4 Actual time for observation

When the time for observation is constant, we can
use the information gain for making action decision
tree. The tree becomes compact and the robot can
determine its action at the shortest observation time
by following the tree. However, if the time for obser-
vation changes depending on the gaze directions, the
time for action decision may be longer. Therefore, we
use the information gain per time, in other words the
velocity, rather than information gain itself.

We denote T as the time to get the observation
after previous observation, and the information gain

per time iik as,

iik =
Iik

T + TC
, (4)

where TC is a positive constant. When the direction
is already observed T = 0.

2.5 Making an action decision tree

We put the attention windows into the tree in de-
creasing order of uncertainty after its observation. Based
on iik we divide training data into two subsets until
the action in the subset becomes unique. For such
training data that take different actions for the same
situation, we add a leaf for each action and record
its probability that it was taken. This tree enables
action decision and observation without direct use of
the contextual information.

For example, suppose we have a set of training data
as shown in Table 1. The numbers in the table indi-
cate the direction in which the landmark was observed.
The view angle is limited and it can gaze and observe
three areas [0, 15], [15, 30], and [30, 45]. It gazes in
[15, 30] at the beginning of action decision, and needs
one period of time to change the direction to observe,
then we set TC = 1. Since px = 2/4, py = 1/4, and
pz = 1/4, H0 is 1.5. The entropy after the observa-
tion to check whether the landmark A is in a window
(27, 30] or not is 0.68. Since after observation, the data
is divided into two subsets, one has data number 3 and
the entropy is 0, and the other has training data 1, 2,
and 3 whose entropy is 0.91. The information gain Iik

is 1.5− 0.68 = 0.82 and the information gain per time
iik is 0.82/(0 + 1) = 0.82 . Since this iik is the largest
among all attention windows, we put this to the root
of the tree. If the landmark is in (27, 30], the action
is unique or entropy is 0 and the action is y. Else,
the subset has three training data and the actions are
not unique. The information gain per time for ob-
servation whether landmark B is in (0, 15] or not, and
observation to check whether landmark A is in (30, 40]
or not is 0.46. We prefer left (0, 15] to observe and the
resultant action decision tree is shown in Fig.1.

Table 1: Example training data
Data # Landmark A Landmark B action

1 5 5 x
2 25 15 x
3 27 10 y
4 40 30 z

Observe [15, 30], if 26<(Landmark A)<=30
then

take action y (leaf a)
else

Observe [0, 15] and if 0<(Landmark B)<=15
then

take action x (leaf b)
else

take action z (leaf c)

Figure 1: Action decision tree of the example data

2.6 Rebuilding the tree

The previous observation and action construct the
current context. However, the previous observation is
done for previous action decision and cannot be always
used for current action decision. The previous action
can be used but does not have rich information. Here,
the knowledge which leaf has been previously reached
includes previous observation and constructs the cur-
rent context. Therefore we use the previous leaf as a
logical sensor and rebuild the tree as follows; 1) build
the action decision tree without contexts, 2) attach
each training datum with leaf previously has been vis-
ited in the sequence and the current leaf, 3) calculate
and extract the attention window which has largest
information gain per time by regarding the leaf which
it belongs to, 4) calculate and extract the partitioning
of the data set by their previous leaves which has the
largest information gain per time (since the time to
gather this knowledge is zero, we just divide informa-
tion gain with TC), 5) compare the results of 3) and
4), then divide training data set into two data sets by
3) or 4) with larger information gain per time, 6) re-
peat from 3) until the all data in the data set belong
to the same leaf.

We use the information gain regarding the leaf it
belongs to, since the leaves will be different ones from
previously created if we use information gain regard-
ing action. We limited the partitioning of data set
only to dividing into two subsets even by the knowl-
edge of previous leaf so as not to cause combinatorial
explosion.

2.7 Making a decision

In order to make a decision to take an action. first
the robot sets the observation probability of attention
windows to 1 or 0 for the direction it is observing and
0.5 to windows of other directions. Then using the ob-
servation probabilities and the probability which leaf

previously visited, calculate action probabilities. An
action probability is the sum of the probability to
reach leaves in the action decision tree to take the
action. If one of the action probabilities is very high,
it takes that action. Otherwise, until one of them be-
comes high enough, it continues to check the direction
of attention windows from the root of the action deci-
sion tree, update the observation probability, and the
action probabilities.

3 Experiments

3.1 Task and Environment

The task is to push a ball into a goal based on the
visual information. We used a legged robot with a lim-
ited view angle for the RoboCup SONY legged robot
league (Fig.2). In the field, there are 8 landmarks,
that is, target goal (TG), own goal (OG), north west
pole (NW), north east pole (NE), center west pole
(CW), center east pole (CE), south west pole (SW),
and south east pole (SE). All the landmarks and the
ball are distinguished by their colors.

The view angle (number of image pixels) of the
robot’s camera are about 52 degrees (88 pixels) in
width, and about 71 degrees (48 pixels) in height.
Each leg and the neck have three degrees of freedom.
We fixed the joint angles of the legs and the role of
the neck joint when it observes the landmarks and the
ball to make its decision. The robot can rotate the pan
joint from -88 to 88 degrees and the tilt joint from -80
to 43 degrees. We prepared five directions (every 44
degrees) in the pan joint and four directions (every 40
degrees) in the tilt joint to observe. The maximum
angular velocity of the pan joint is about 6[rad/s] and
4[rad/s] in the tilt joint. Since it needs at least 0.36[s]
before action decision after changing observing direc-
tions, we prepared TC = 0.36[s].

Figure 2: The SONY legged robot for the RoboCup
SONY legged robot league.

Figure 3: Experimental field (same as the one for the
RoboCup SONY legged robot league).

As vision sensors, we used the coordinates of the
image centers of the landmarks and the ball, the min-
imum and maximum x, y coordinates (totally four) of
the goals. We did not directly use the values in the
images, but used the pan and tilt angles when the tar-
gets are viewed at center of an image. Also, we used a
pair of the pan (x) and the tilt (y) angles as a sensor
value, or we divided training data set by the observa-
tion to check whether a sensor value is in the rectangle
attention window (xmin, ymin)− (xmax, ymax) or not.

3.2 Experimental results

We trained the robot starting from one of three po-
sitions in the middle of the field. We prepared seven
actions, try to reach the ball, move forward, move
left, right forward, turn left, right, and turn leftward,
rightward. For each starting position, we trained five
times and obtained 92 data points to construct trees.
We show the part of the action decision tree in Fig.4.
The numbers in the figure indicates the angles in de-
grees. When the robot has no prediction and not
observed yet, first attention window is rectangle of
(−19,−7)− (15, 20) for the ball and observe the direc-
tion (3, 2). Direction (X, Y) indicates the direction of
observation. X is the panning direction (1, ..., 5) and
3 if it is center. Y is the tilt direction (1, ..., 4) and
2 if it is horizontal. Since the robot is facing (3, 2)
at the beginning of action decision time, the direction
(3, 2) is preferred by nodes near the root. If the center
of the ball image is in the window, the next window
is (−10, 10) − (7, 17) for the ball and the direction is
same (3, 2). Again the next window (−8,−4)− (6, 11)
is for the ball and the direction is (3, 2). If it is in the
window, try to take the left-forward action otherwise

O(3, 2) [ball] -19<x<=15, -7<y<=20 then
O(3, 2) [ball] -10<x<=7, 10<y<=17 then

O(3, 2) [ball] -8<x<=6, -4<y<=11 then
Do LeftFoward

else
Do LeftTurn

else
O(3, 2) [ball] -20<x<=-12, 12<y<=19 then

Do LeftFoward
else

Do LeftFoward
else

O(3, 2) [TG xmin] -1<x<=20, -20<y<=20 then
O(3, 2) [ball] -2<x<=20, 11<y<=18 then

Do LeftTurn
else

Do LeftTurn
else

O(3, 2) [NE] -20<x<=21, -18<y<=-3 then
O(3, 2) [NE] -18<x<=-4, -4<y<=9 then
Do LeftFoward

else
Do RightFoward

else
:

Figure 4: Part of action decision tree generated by
proposed method

left-turn action and so on.
Fig.5 shows the attention windows generated with

proposed segmentation method with time considera-
tion (information gain per time). Fig.6 shows the at-
tention windows generated with the knowledge which
leaf the robot previously visited. We assumed that
action sequences are started from the beginning as
training data sequences and can use the knowledge
of previous visited leaf in the situations of middle of
the training sequences. When there are chances that
the robot starts from middle of the sequences it has to
use another tree (without context) at the begging of
the sequence. The windows are slightly different from
the ones without knowledge.

Fig.7 shows the attention windows generated with
the knowledged which leaf the robot previously vis-
ited. We prepared data so that the robot can start
from middle of the training sequences. When we mark
each training datum with the previously visited leaf we
doubled the datum, one is marked with previous leaf
and the other marked that it does not know previous
leaf. The created windows (Fig.7) resembles more to

the ones without knowledge (Fig.5) than Fig.6.

-100

-60

-20

20

60

-116 -66 -22 22 66 116

T
ilt

 a
ng

le
[d

eg
]

�

Pan angle[deg]

Figure 5: Created attention windows by proposed seg-
mentation with time consideration.

-100

-60

-20

20

60

-116 -66 -22 22 66 116

T
ilt

 a
ng

le
[d

eg
]

�

Pan angle[deg]

Figure 6: Created attention windows with knowledge
of previous leaf (we used data which has knowledge of
previous leaf only, context(1)).

Table 2 shows the comparison of the number of
nodes (windows) in a tree (# of nodes), the depth
of the tree, the number of expected observing direc-
tions (dirs), the expected time for observation (time).
In the table, “pre-quant.” means attention windows
were generated with pre-quantized sensor values in ev-
ery 20 degrees with information gain, “quant.” only
means attention windows were generated with pro-
posed quantization with information gain, “proposed
quant.” means proposed quantization with informa-
tion gain per time. The proposed quantization shows
smaller size of the tree and the smaller number of ex-
pected observing directions than fixed quantization.
By using information gain per time, it can reduce the
time for observation.

It shows that by rebuilding and using contexts it

-100

-60

-20

20

60

-116 -66 -22 22 66 116

T
ilt

 a
ng

le
[d

eg
]

�

Pan angle[deg]

Figure 7: Created attention windows with knowledge
of previous leaf (we used all data, context(2)).

can reduce much time. It is interesting that by as-
suming that it does not start from the middle of the
training data sequence (context(1)), the time for ob-
servation is reduced, however the size of the tree is
larger than when we do not assume (context(2)). Also
we note that the knowledge of previous leaf was used
only a few times.

Table 2: Comparison of sizes of the tree, expected
number of observing directions, and expected time for
observation

of depth # of dirs time[s]
nodes leaves

pre-quant. 47 17 24 5.4 3.5
quant. only 23 8 12 4.3 2.5
proposed quant. 35 13 15 3.4 2.0
with context(1) 49 9 25 2.0 1.1
with context(2) 37 9 19 2.6 1.6

4 Discussions and conclusions

We showed that a decision tree which is constructed
with greedy for information gain or information gain
per time. Efficient observation for decision making
was achieved by greedy approach. However, decision
making with tree constructed with greedy approach
might be prone to sensor noise, occlusions, and so on
[5]. Currently, training data should cover the case
of sensor noises or of occlusions in order to overcome
this problem, then we may need large training data. A
method which can find robustness of observation may
be desired.

We used the same TC for calculation of informa-

tion gain per time by the partitioning of data-set by
the knowledge of previous leaf. To use the knowledge
much more we should use another TC used for atten-
tion windows. This parameter should be studied.

To conclude, we proposed a method to make a de-
cision tree with an autonomous sensor value segmen-
tation with consideration for variance in time interval
to acquire observation and a kind of context. Atten-
tion control is done by observation following a decision
tree which is constructed based on information crite-
rion with sensor space segmentation. The validity of
the method was shown with a four legged robot.

References

[1] N. Mitsunaga and M. Asada. Observation strategy for
decision making based on information criterion. In Pro-
ceedings of the 2000 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 1038–
1043. 2000.

[2] A. K. McCallum. Learning to use selective attention
and short-term memory in sequential tasks. In From
animals to animates 4, pages 315–324. 1995.

[3] S. D. Whitehead. A complexity analysis of cooperative
mechanisms in reinforcement learning. In Proceedings
of AAAI-91, pages 607–613, 1991.

[4] Y. Takahashi, M. Asada, and K. Hosoda. Reasonable
performance in less learning time by real robot based
on incremental state space segmentation. In Proceed-
ings of the 1996 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1518–1524,
1996.

[5] T. Yairi, S. Nakasuka, and K. Hori. State abstraction
from heterogeneous and redundant sensor information.
In Y. Kakazu, M. Wada, and T. Sato, editors, In Proc.
of the Intelligent Autonomous Systems 5, pages 234–
241, 1998.

[6] M. KAMIHARAKO, H. ISHIGURO, and T. ISHIDA.
Attention control for state space construction. In
Y. Kakazu, M. Wada, and T. Sato, editors, In Proc.
of the Intelligent Autonomous Systems 5, pages 258–
265, 1998.

[7] M. Asada, S. Noda, and K. Hosoda. Action based
sensor space segmentation for soccer robot learning.
Applied Artificial Intelligence, 12(2-3):149–164, 1998.

[8] J. R. Quinlan. C4.5: PROGRAMS FOR MACHINE
LEARNING. Morgan Kaufmann Publishers, 1993.

