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Abstract

“Mimesis” theory focused in the cognitive science
field and “mirror neurons” found in biology field shows
that the behavior generation process isn’t indepen-
dent of the behavior cognition process. The genera-
tion and cognition processes have a close relationship
each other. During the behavioral imitation period, a
human being doesn’t practice simple joint coordinate
transformation, but will acknowledge the parents be-
havior. It understands the behavior after abstraction
as symbols, and will generate one’s self behavior. Fo-
cusing on these facts, we propose a new method which
carries out the behavior cognition and behavior gener-
ation processes at the same time. We also propose a
mathematical model based on Hidden Markov Models
in order to integrate four abilities; 1) symbol emer-
gence, 2) behavior recognition, 3) self behavior genera-
tion, and 4) acquiring the motion primitives. Finally,
the feasibility of this method is shown through several
experiments on a humanoid robot.

1 Introduction

The research of humanoid robots has a long his-
tory and has accumulated a substantial amount of
literature. The focus of early efforts was mostly on
the dynamics and control of bipedial walking mo-
tion. Although it has not yet reached the level of a
complete solution, with liability and adaptability, the
hardware technology has been established for building
autonomous humanoids [1][2][3].

Recently, the human behavioral science and intelli-
gence has become conspicuous as a real research issue
of robotics. Although the motivation of the artificial
intelligence originated there, the physical limitations
have forced or justified the researchers to carry on their
research in a limited scope of complexity. It would be
a major challenge of contemporary robotics to study
robotic behaviors and intelligence in the full scale of
complexity. This could then mutually share research

outcomes and hypotheses with the human behavioral
science and human intelligence.

The discovery of mirror neurons[4] has been a no-
table topic of brain science concerning such issues.
Mirror neurons have been found in primates’ and hu-
mans’ brains, which fire when the subject observes
a specific behavior and also fire when the subject
starts to act in the same manner. It also locates on
Broka’s area, which has a close relationship with lan-
guage management. This fact suggests that the behav-
ior recognition process and behavior generation pro-
cess are combined as the same information process-
ing scheme. This scheme is nothing but a core en-
gine of the symbol manipulation ability. Indeed, in
Donald’s “Mimesis Theory”[5], he said that symbol
manipulation and communicative ability are founded
upon behavior imitation, which is integration of be-
havior recognition and generation. We believe that
a paradigm can be proposed taking advantage of
the mirror neurons, with considerations of Deacon’s
contention[6] that language and the brain had caused
each other to evolve.

So far, many researchers have tackled with the issues
between the imitation learning for humanoids and hu-
man intelligence|[7][8]. There are some suggestions that
module structure of basic motions is needed for the
symbolization and representation of complex behavior,
such as Schaal’s work[7]. In Kuniyoshi’s approach[9],
robots can reproduce complex behaviors from obser-
vation of human demonstration with the abstraction
and symbolization, however, it is difficult to be ap-
plied to general recognition and reproduction process
because of lack of dynamics point of view, that means
the robots have to memorize the whole flow of basic be-
havior. Moreover, the basic behavior modules needed
to be designed by developer. Samejima et al have pro-
posed an imitation learning framework with symbol-
ization modules[10]. In this case, a premise have been
set that sequence of symbol is given from others by
communication, thus a certain representation model
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Figure 1: An outline of proposed mimesis model

for dynamics of the whole body motion are needed.

In this paper, we propose a mathematical model
that abstracts the whole body motions as symbols,
generates motion patterns from the symbols, and dis-
tinguishes motion patterns based on the symbols. In
other words, it is a functional realization of embod-
ied symbol emergence framework which is an inspira-
tion from the mirror neurons and the mimesis theory.
Therefore we call the framework as “mimesis model”.
The purpose of the research is to propose a methodol-
ogy of mathematical design for the mimesis mode.

One as observer would view a motion pattern of the
other as the performer; the observer acquires a sym-
bol of the motion pattern. He recognizes similar mo-
tion patterns and even generates it by himself. The
observer would then need to modify it from the per-
former’s motion to observer’s one according as his own
body condition. The model is developed using Hid-
den Markov Models (HMMs). One issue is to identify
appropriate motion primitives that enable both mo-
tion recognition and generation. This problem is to be
solved using continuous Hidden Markov Models. The
second issue is how to generate the motion patterns
as time-series of the motion primitives, which is to
be solved adopting discrete Hidden Markov Models.
The acquired models are to be modified according as
the observer’s body. This is the third issue and to be
discussed as a problem of database managements for

HMM.

First, we introduce the mathematical model of
mimesis in section 2. In section 3, computational
methods for symbol emergence, motion recognition
and generation are explained. In section 4, we dis-
cuss how to develop and design the motion primitive
representation. The conclusion follows experimental
results in section 5.

2 Mimesis model which recognize others’
motion and generate self-motion

In this section, we explain the outline of mimesis
models with showing the difference between usual im-
itation models.

In an imitation learning framework MOSAIC which
has been proposed by Samejima et al[10][11], plural
dynamics and inverse-dynamics modules for the pre-
diction and control of motion are implemented in order
to imitate others’” motion. This framework is based
on bi-directional theory suggested by Miyamoto and
Kawato[12]. Both of them aim to imitate human’s be-
havior and symbolize the motion patterns as motion
primitives. One of disadvantages of these methods is
that an others’ motion is always needed as a refer-
ence pattern, because it has no ability of description
for dynamics of time-series motion primitives. On the
contrary, we aim not only to imitate others’ motion
but also abstract the time-series motion patterns as
symbol representation. It causes a situation in which
no reference motion pattern is needed, that is, more
flexible for symbol emergence from behavior imitation.

We, here, propose an imitation framework which ab-
stracts the dynamics of the motion as symbol repre-
sentations, recognizes others’ motions, and generates
self-motions from the symbol representations. The re-
alization of the framework leads to the implementation
of the mirror neuron from engineering point of view.

2.1 Mimesis model based on Hidden Markov
Models

The mimesis model consists of three parts; percep-
tion part, generation part and learning part, as shown
in Fig.1. In the perception part, observed motion pat-
terns are analyzed into basic motion primitives, and
the dynamics in the sequence of the elements is ab-
stracted as symbol representations.

In the generation part, a sequence of motion ele-
ments is decoded from a proto-symbol. However, the
generated motion patterns would be inappropriate for
real humanoids. For the issue, we introduce the learn-
ing part where motion elements are modified based



Figure 2: A simple left-to-right type HMMs

on a database consist of performer’s motions and ob-
server’s motions.

Characteristics needed by the mimesis model is to
integrate three functions; motion recognition, motion
generation and symbol emergence of motions. We fo-
cused on Hidden Markov Models (HMMs) as math-
ematical backbone for such integration. The HMM
is one of stochastic processes which takes time series
data as an input, then outputs a probability that the
data is generated by the model. The HMM is one of
most famous tools as a recognition method for time se-
ries data, especially in speech recognition. The HMM
divided into two types; discrete HMM and continu-
ous HMM. The former treats sequences of discrete la-
bels, the latter treats sequences of continuous multi-
dimensional vectors. In this subsection, we introduce
the discrete HMM for the first step. The HMM con-
sists of a finite set of states Q@ = {qi1,...,qn}, a fi-
nite set of output label S = {oy,...,0m}, a state
transition probability matrix A = {a;;}, an output
probability matrix B = {b;;}, and an initial distri-
bution vector m = {m;}, that is {Q,S,A,B,w}. In
this framework, state transition is performed proba-
bilistically and some labels o; are output during the
transition as shown in Fig.2.

2.2 Motion elements

In order to connect discrete symbol representations
and time-series motion data, motion element is intro-
duced. A motion element corresponds to a point in a
phase space which consists of joint angle of humanoids,
velocity, acceleration, and so on as follows:

def
u = . (1)

To say more generally, adopting displacement and ve-
locity of base link and hands, and various sensory in-
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Figure 3: Motion Elements and Hidden Markov Mod-
els

formation, is effective for recognizing and generation
of more complex behavior. In this paper, we do not de-
termine the type of physical quantity or concrete tar-
get behavior. We stand on the stance that a developer
determines the task and physical quantity according
to need.

A time-series motion pattern
O = [0k10k2 . OkT] (2)
kie{1,2,...,M} (3)

indicates an other’s motion and self-motion at the
same time in the HMM, by correspondence of the M
pieces of motion element (uy,...,u, ) to output label
o as follows:

o, = Uu;, (4)

where O indicates a row vector which consists of a se-
quence of motion elements 0. The i-th element from
the left indicates the motion element at the i-th dis-
crete time. The matter what kind of physical quantity
is effective for the model, is affected by the charac-
teristic of target behavior. In this paper, we adopted
simple joint angle space as the motion element for the
first step, and propose motion recognition, generation
and abstract method independent of the type of phys-
ical quantity.

2.3 HMMs as a proto-symbol

Definition by Eq.(4) is nothing but a connection be-
tween a label (or an index) and feature vector for a
certain moment. To represent the dynamics of fea-
ture vector sequence, certain representation method



are needed. Symbols may be defined in a narrow sense
as ones with embodied meaning and their mutual dis-
tances. We propose to consider the acquired HMMs
as symbols. Although, in the scope of this paper, they
have embodied meanings, their mutual distances have
not yet been introduced. The authors’ plans to dis-
cuss it in the future work. In this sense, it would be
appropriate to call the HMMs proto-symbols.

We shall concentrate on the HMM parameters. As
left-to-right type HMMs as shown in Fig.2 are used in
the mimesis model, initial distribution vector 7 have
fixed value as (1,0,...,0). A set of state Q and a set
of output label S have no direct relationship between
output time series data. State transitions probability
matrix A and output probability matrix B can be
regarded as a abstraction parameter of probabilistic
dynamics of the HMM.

Thus, we define the proto-symbols as follow

def

Ps = {A,B}. (5)

The Hidden Markov Model is stochastic mathematical
framework for sequential data. It is furnished with well
established algorithms of computation. The acquisi-
tion, recognition and generation of motion patterns
are to be efficiently computed using the algorithms.
It is also known that HMMs are successfully used in
speech recognition.

An alternative of HMMs for such computation is
the use of recurrent neural networks (RNNs). RNNs
also memorize dynamics of patterns [13][14][15] [16].
The authors tested the use of RNNs for motion recog-
nition and generation[14]. According to the result
of[14], more than 500 nodes and more than 200,000
weight parameters between each node are needed in
order to integrate the memorization and generation
process on the same RNN. The RNN consists of mo-
tion element neurons, symbol representation neurons
and buffer neurons for treating time-series data. The
required number of weights increases in proportion to
the square of the number of all nodes. On the contrary,
the number of parameters used in HMMSs is propor-
tional to the product of the number of nodes and mo-
tion elements. To give a concretely example, a HMM
consists of 25 nodes and 80 motion elements requires
about 2,500 parameters, in order to recognize and gen-
erate the motion. Therefore, the drawback of RNNs
is in the low efficiency of computation RNNs would
use a large set of parameters to memorize a few mo-
tion patterns. The parameters would require a large
computation to be adjusted.

3 Motion abstract, recognition and gen-
eration using HMMs

3.1 Creating proto-symbols through observa-
tion

Motion abstraction, that is proto-symbol genera-
tion, consists of two phases. In the first phase, ob-
served motions are transferred into sequence of the
motion elements by a segmentation process. In the
second phase, dynamics exists in the motion elements
sequence is abstracted, and represented as proto-
symbols.

In order to transform the observed motion pat-
tern ©(t) into a sequence of motion elements O =
[0k, Ok, - - . Ok, ], O for each short time period is sam-
pled, then

exp{—%(ﬂ - Hi)TEi_l(e - Hz)}
(27T)D det 22

(6)

Jj = argmax
(2

is calculated. The meaning of above equation is let-
ting j be ¢ which causes the maximum value of the
right side. Where D is the number of dimension of
the motion elements, det indicates the determinant of
a matrix, 7 indicates a transpose of matrix. The right
side represents a Gaussian distribution function with
a covariance matrix ¥ and a mean vector pu. The
calculation contributes to selecting a suitable motion
element u; which locates near by the sampled motion
x in the phase space. Let the u; be a motion element
for each short time period. [wg, U, ... Uk, ], namely a
sequence of motion elements, is output by a repetition
of above calculation for all short time period.

After that, a parameter of a HMM ({A, B}) which
output the sequential elements plausibly is calculated
and registered as a proto-symbol Ps. Humanoids
gather several motion patterns as a stock of observed
data for the learning. In the case of an unknown mo-
tion is input, the robot creates a new HMM. A and B
can be calculated by Baum-Welch algorithm which is
one of EM-algorithms[17].

3.2 Motion recognition using proto-symbols

To recognize others’ motion, observed motions are
transformed into sequence of motion elements O =
[01,09,...,0¢], and a parameter P(O|Pgs) is calcu-
lated. This parameter indicates a probability that a
motion pattern O is generated by a proto-symbol Pg.
This value is called as likelihood, calculated by forward
algorithm[17].

Each proto-symbol is corresponded to each motion,
thus, likelihood values of the input motion against each
proto-symbol are calculated. A proto-symbol which



corresponds to input pattern should indicate high like-
lihood, and other proto-symbols ought to indicate low
likelihood. In order to distinguish these likelihoods,
following criterion is introduced

max{P(O|Ps;)}
& second{ P(O|Ps;)}’

R(0) = (7)
where second(x) means that the second highest value
in the components of . Mimesis model recognizes the
input motion without any confusion when the R indi-
cates high value. In this case, the recognition result
becomes Pgs;, where

j = argmax{P(O|Ps;)}. (8)

When the R indicated low value, the recognition was
failed and mimesis model tries to shift to proto-symbol
creation phase.

3.3 Motion generation using proto-symbols

Basically, original patterns are decoded using expec-
tation operator in stochastic model, however, applying
the expectation operator is difficult in the HMM. The
HMM has a two-stage stochastic process; state transi-
tion and label output. Applying expectation operator
is simple for the latter process, however, difficult for
the former process. The results of recurrent state tran-
sition would not fit on the same dimensional phase
space. For example, the length of a state sequence
changes every trial. It means that integration of the
probability values could not executed holomorphically.
Therefore, we adopted the averaging method over rep-
etition of motion generation. The detailed order of the
generation is as follows.

1. Initialization : Let the starting node be ¢, the
node token be ¢ = 1, motion elements sequence

be O = ¢.

2. Deciding the transition destination node g; using
transition matrix A stochastically.

3. Deciding the output label o, during the transi-
tion from node g; to ¢; stochastically using output
matrix B.

4. Adding the output label ox, to the motion ele-
ments sequence O. O := [0 oy,].

5. Let the generation process be stopped when the
token reach the end node gn. Or, returns to the
step (2) with letting i := j,¢t := ¢ + 1.

6. Finally, the sequential motion elements are trans-
formed into continuous joint angle representa-
tions.

The output motions using above operations are not
the same, but have different time length and order of
motion elements, because the output operations are
stochastic. However, it is possible to generate an ap-
proximate motion pattern because the parameters A
and B represent the abstraction of dynamics in the
motion pattern. Therefore, above operations are re-
peated, and plural generated motions are averaged.
As the time length of each generated motions are dif-
ferent, makes the time length uniform using

t
o't =0(T)
() =6(T7- ©)
where T is the time length of each motion, T, is the
time length of the uniformed motion. After that, each
joint angle are averaged.

Several researches already proposed motion recog-
nition methods based on the HMM][18][19] [20][21][22],
however, no research has been existed in which motion
is generated from the HMM. Masuko et al[23][24] have
been proposed a speech parameter generation method
using the HMM, however, the generation process is
not opposite direction of the speech recognition pro-
cess. The most important characteristic of our method
is that the motion recognition and motion generation
process are integrated by only single HMM.

4 Development of motion elements
through repetition of motion observa-
tion and generation

The performance of motion recognition and genera-
tion is influenced by the characteristic of motion el-
ements. If the number of elements were too little,
the generation would be filed. If the motion elements
had no relationship between the observed motions, the
recognition process would be failed. Therefore, we
adopted an approach that the system searches the best
motion elements with an evaluation criterion whether
the generated motion would be fit for the body and
the recognition would be succeeded against familiar
motion. Using the method, the humanoid can acquire
adequate motion elements through repetition of mo-
tion perception and generation.

4.1 Introduction of Continuous HMMs and
applying to mimesis model

In this phase, we introduce continuous HMMs[17],
which can treat continuous multi-dimensional data.
The difference between normal discrete HMMs
(DHMMs) and continuous HMMs (CHMMs) is that
the transition process outputs continuous multi-
dimensional vectors, different from the DHMMS in
which the discrete labels are output ,shown in Fig.4.
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Figure 4: A continuous Hidden Markov Models

On the CHMMSs, output probability matrix B becomes
probability density functions in CHMMs. Here, the
density function is approximated with linear combina-
tion of Gaussian functions as follows:

0) = eNij(0: 5, ), (10)
7j=1

where P;(0) is probability density function for output
of continuous vector o at i-th state node, m is the
number of mixture Gaussian functions, ¢;; is mixture
coefficient, A'(0; X, ) is the Gaussian function:

Nij(0; 2, p)

_ exp{,é(eiu”)Tz;l(OilJ]“)}
= (11)
\/(27r)D det Ei]'

where ¥ is covariance matrix, g is mean vector, and
D is the number of dimension of continuous vector o.

The characteristic of the CHMMSs are decided by
parameter {m, A, ¢, ¥, u}. These parameters are cal-
culated using Baum-Welch algorithm .

Here, each mean vector of the Gaussian function
is regarded as important representation of the ob-
served motion. Therefore, we divide the parameters
of CHMMs, and redefine the motion elements e as fol-

lows.
def

u; = {X;,p1;} (12)
In other words, the number of motion elements is as
many as the number of mixture Gaussian components.
An important issue is that the motion elements are au-
tomatically calculated by the Baum-Welch algorithm
as well as mentioned in Section 3.1.

~N

S te—

Discrete HMMs

Us@

W
w ---,

Continuous HMMs

@
o
| AtdLEALT

time J

Figure 5: A model of Hybrid Hidden Markov Model

Motion elements could be regarded as filter between
continuous motion representation and discrete mo-
tion representation. When continuous motion would
be transferred into discrete motion, e; where ¢ =
arg max; \;(0), is adopted as a typical motion element
for each time period. When discrete motion would be
transfered into continuous motion, sequence of p; is
used directly.

To sum up, mimesis system can take following ad-
vantages with CHMMs.

e Motion elements are able to express the whole
body motion, therefore, various motion patterns
are available easily.

e Parameters of motion elements are automatically
calculated.

4.2 Hybrid Hidden Markov Model

Although many advantages are available, CHMMs
have a disadvantage that huge computational quantity
is needed. It should take much time for motion gener-
ation and recognition. Therefore we propose a hybrid
Hidden Markov Model which consists of CHMMs and
DHMMs as shown in Fig.5.

In motion recognition and generation phase,
DHMNMs are used which computational quantity is lit-
tle. In motion elements acquisition phase, CHMMSs are
used which computational quantity is large.

4.3 Closing the mimesis loop for embodiment

Parameters which decide the characteristic of
HMMs and motion elements are acquired using Baum-
Welch algorithm [25] which is a kind of EM algorithm.



This algorithm can be expressed by following equa-
tions:

D={0'0%...,0"} (13)
{A,B} = Bp(D) (14)
{p, 2} :=Bc(D), (15)

where Bp,Be are operations using the Baum-Welch
algorithm, D is a database consists of [ observations
as Initial database D° consists of only observed others’
motions, that is, motion elements and proto-symbols
which have no relationship between learner’s physi-
cal characteristic are acquired by above operations.
Therefore, let the proto-symbols and motion elements
be acquired with database manipulation during repeti-
tions of motion recognition and generation as follows.

1. Generating a motion O from a proto-symbol Pg
and motion elements.

2. Judging whether the generated motion O is suit-
able or not.

3. Adding the motion to the database when the re-
sult of judge is good. D! := D' UO

4. Acquiring the proto-symbols and motion elements
using above Eq. (14)(15), and returns back to
step (1).

For the evaluation at the step (2), two evaluation
criteria were introduced; an inner evaluation for check-
ing the characteristic of proto-symbol, and an outside
evaluation for checking the aim and meaning of the
motion from point of teacher’s view. For the outside
evaluation, we prepared following criterion

T
By = % /0 1050 (1) — Bue ()], (16)

where 0;,(t) and 6,,:(t) indicate the joint angle of an
observed ideal motion and a generated motion. For
the inner evaluation, recognition rate R(O) explained
in Section 3.2 is used.

Considering above two criterion, following inte-
grated criterion is used for the experiment;

V =aFEy + ﬂR71(0)7 (17)

where o and (3 is a certain constant. When the value V'
is larger than a certain threshold, the mimesis model
judges that i-th motion data is suitable for recogni-
tion process, adds the motion data into database, and
calculates the motion elements again. These constant
and threshold is adjusted according to each experiment
case.

Figure 6: Humanoid HOAP-1

At the step (3), it is desirable that the generated
self-motion and observed others’ motions are distin-
guished. As the motion elements are used for both
motion recognition and generation, simple distinction
leads to a deterioration of the process. Thus, a dis-
tinction strategy has been introduced that generated
self-motions are stored into the database vividly, ob-
served others’ motions are stored dimly. Due to the
distinction method, the influence of initial others’ mo-
tion would be decrease, and the database would be
gradually under the control of generated self-motions.
Actually, vivid motions are stored with little variance
and dim motions are stored with large variance. In the
learning phase, the number of motion samples in the
database is controlled using the variance value.

5 Experiments of motion elements acqui-
sition

A humanoid used in experiments is shown in Fig.6.
The humanoid has four degrees of freedom at each
arm, six degrees of freedom at each leg, namely 20
degrees of freedom for the whole body. We have con-
firmed the performance of our method by experiments
where the mimesis model observes humans’ motion
and generate motions for a real humanoid. Using by
the Behavior Capturing System [26], joint angle data
for 20 degrees of freedom are directly observed because
the degrees of freedom of the humanoid is 20. The time
period of each motion is about 2[sec] with sampling
time 20[msec].
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Figure 7: Original motion pattern

5.1 Experiments of motion generation

A humanoid used in this experiment has 20 degrees
of freedom. We investigated basic performance for
squat behaviors. In the squat behavior, characteristic
motion collected around the lower body. Therefore, we
adopted simple motion element which consists of three
joint angles, that is, hip (pitch axis), knee and ankle
(pitch axis). In this subsection, several experiments
are performed by the simple motion element.

Figure 8 shows the output motion pattern by one
time output operation. Comparing with an original
motion pattern used in the learning (Fig.7), approx-
imately pattern is generated but noise was awfully
arisen. The cause of the noise is that the discrete mo-
tion elements are selected at each moment stochasti-
cally, thus the coarse and the discontinuity was stood
out.

Fig.9 shows the output motion pattern after 1000
times operation explained in Section 3.3. A CG an-
imation using the pattern is shown in Fig.14. Com-
paring with the motion pattern by one time operation
(Fig.8), the joint angle became to be smoothed. There
were some joint angle errors between the original pat-
terns. We think that the cause of the error is the
influence of coarse discrete motion elements.

The computational time for the generation process
was about 1[sec] using Pentium-IIT 1{GHz] processor.
The time is enough fast as the off-line pattern gener-
ator for humanoids. For this sort of problems, Okada
et al have been proposed a compression method[27]
in which a motion pattern of humanoids which have
over 20 degrees of freedom is transferred into a three-
dimensional vector We think that reduction of the
computational cost can be performed with adopting
the method.

5.2 Experiments of motion recognition

For the motion recognition experiments, seven be-
haviors; (a) tennis swing (swing), (b) walking (walk),
(c) Cossack dancing (dance), (d) kicking (kick), (e)

d — Hit Joint
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_________ =+ Ankle Joint
100 — Lmaun =y

Mar iy, _aerTu )
o MR Py Y e
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-100
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Figure 8: A Motion pattern using only one time gen-
eration
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Figure 9: A Motion pattern using 1000 times gener-
ation

backward walking (back), (f) crawling (crawl), are pre-
pared as shown in Fig.10. The behavior from (a) to (e)
were treated as already-known motions, the behavior
(g) was treated as a unknown motion. Table 1 is the
recognition result.

The value in the table indicate the logarithm of like-
lihood P(OJA, B). Proto-symbols arranged length-
ways indicate the target of the recognition, and be-
havior names arranged sideways indicate the proto-
symbols already learnt. The value indicates larger, the
target motion matches better with the proto-symbol.
The value of a certain target motion against a proto-
symbol which is corresponds to the motion indicates
high, that is located on a diagonal line. The values
of unfamiliar motion (unknown) against each proto-
symbol are almost the same. Thus we see that the
recognition process would be succeeded without mis-
take, when recognition rate R is set to about 1000
empirically.

5.3 Experiments of motion elements acquisi-
tion

For this experiment, four kinds of motions; walking,
squat, picking up, and Cossack dancing, were recorded.
The dimension of motion elements is three; hip joint
(pitch), knee and ankle joint (pitch), as well as Section
5.1

After the 50 observations, motion generation pro-
cess is executed 50 times, and appropriate motions are



Figure 10: Target behaviors (a) tennis swing, (b) walking, (¢) Cossack dance, (d) kicking, (e) backward walking,
(f) crawling, (g) unknown behavior.
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Table 1: Recognition result of others’ motion using HMMs.

Input Behavior Proto-symbols

swinging | walking | dancing | kicking | backward walking | crawling R
swing -430 -3915 -4077 -3940 -4114 -4007 | 3485
walking -3048 -225 -3071 -1646 -3099 -3019 1420
dance -1656 -1603 -144 -1613 -1683 -1577 1433
kicking -2543 -1574 -2562 -199 -2585 -2519 1374
backward walking -2395 -2318 -2413 -2332 -202 -2372 2117
crawling -4083 -3950 -3815 -3976 -4151 -488 3327

unknown behavior -1915 -1853 -1928 -1865 -1946 -1896 11

Figure 12: Motion Capturing System: step motion for learning data

added into database. Figure 11 shows the acquired
motion elements. Each dot mark indicate the motion
element, solid line indicate the original motion’s tra-
jectory. As the figure shows, the motion elements are
located near the original motion, that is, our method
shows good performance.

5.4 Experiments of motion elements develop-
ment based on embodiment

Here, we set up a situation where the joint angle
limitation of the humanoid’s knee is about 40[deg], less
than humans’ one. We investigated whether motion el-
ements for the humanoid are acquired by observations
of humans’ motions under such a condition. In the ex-
periment, 80 times loop are repeated as explained in
Section 4.3.

Figure 12 shows the original motion which is per-
formed by a human. Figure 15 shows the acquired
motion elements from the performance when the joint
angle limitation is not existed. A result with the lim-
itation condition is shown in Fig.16. In these figures,
three axes indicate hip joint (pitch), knee joint and
ankle joint (pitch), as well as Section 5.1. The curved
line in the figures corresponds to the motion trajec-
tory. The dots indicate acquired motion elements. As
Fig.15 indicates, the motion elements are located near
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by the original motion trajectory. Comparing with
the Fig.15, motion elements are gathered not only on
the A area, but also on the B area in Fig.16. These
motion elements located on the B area is acquired by
the generated self-motions in the database, which fits
for the humanoid embodiment. This result shows that
the both motion elements are acquired; elements for
the recognition of others’ motions (A area) and ones
for the generation of self-motion (B area).

5.5 Designing of HMMs

Here, We shall concentrate on the rest parameter,
namely structure of HMMs. As the HMMs adopted
in this paper are left-to-right type, the rest parame-
ter is the number of nodes. It is possible to use the
evaluation criterion explained in Section 4.3 for inves-
tigation of the number of nodes, during the repetition
of motion recognition and generation.

Swing of tennis is selected for the experiment, the
error value Ey is measured with changing the number
of nodes from 10 to 40. The result if shown in Fig.18.
As the diagram indicates, the error value decreases
hardly where the number of nodes shifts from 24 to
25. Figure 17 shows the generated motion pattern for
four conditions; the number of nodes is 20, 24, 25 and
40, respectively. The diagram focused on the right
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shoulder’s yaw joint. Solid lines indicate generated
motion pattern, broken lines indicate original motion
pattern. The diagram supports the result that the
desirable number of nodes is above 25.

6 Conclusions

In this paper, we proposed a framework named
“mimesis model” which integrates motion recogni-
tion/generation and symbolization of motion patterns
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Figure 16: Acquired embodied self-motion elements
using loop structure

based on mimesis theory. In our mimesis model, proto-
symbols and motion elements are introduced with
Hidden Markov Models in order to integrate follow-
ing three ability using only one mathematical model;
(1) abstraction of motion patterns and symbol rep-
resentation , (2) generation of self-motions from the
symbol representation, and (3) recognition of others’
motions using the symbol representation. Through
experiences, the feasibility of the mimesis model is
cleared. Furthermore, we proposed an approach in

-0.45
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Figure 17: Generated motion (shoulder’s yaw joint) for each number of nodes

which the development of motion elements is resulted
as the management of motion database, and investi-
gated the effectiveness through an experiment in which
the learner’s physical body condition is different from
the teacher’s one.

The mimesis model is not simple method for motion
recognition, generation, abstraction. The recognition
process which transfers an observed others’ motion
into proto-symbol representation, and the generation
process which transfers a proto-symbol representation
into self-motions is implemented as opposite direction
function by only one mathematical model. The most
important characteristic is integration between imita-
tion learning and symbol emergence is established with
defining the bidirectional computation model as proto-
symbols.

In the current stage, the proposed model can be ap-
plied to simple motion patterns; however, the applica-
tion of the method to complex behavior is difficult, be-
cause consideration of external environment is needed
such as tracking an object by eyes, throwing a ball,
and so on. It is desirable that some abstracted behav-
ior units are designed, and HMMs are applied to such
behavior units. For the issue, we plan to construct hi-
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erarchical HMMs in order to be applied to from simple
motion level to complex behavior level.

We think this result is the first step to connect
language development process to the motion acquisi-
tion process using the mimesis model, for instance,
humanoids try to make communications with others,
and build a relationship representation between proto-
symbols and linguistic symbols. For such direction, we
try to define the distance between each HMM and es-
tablish computational method in order for the proto-
symbols to evolve into general symbols. We believe
that this approach leads to build an intelligent system
which connects humanoids intelligence and behavior
science.
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A Appendix

A.1 Notation

The number of nodes

The number of motion elements

N
M
T The length of observation sequence
R The number of motions in database
o

a sequence of observations
Ot the observation at time ¢
the probability of a transition from state i to
j.
Cjm  weight of mixture component m in state j.

vector of means for the mixture component m
of state j.

covariance matrix for the mixture component

Sim .
I m of state j.
A.2 Viterbi algorithm for motion recognition

P(OJA, B, ) is calculated using following equation
which is called *Viterbi algorithm’. Let the forward
probability a;(t) for some model Ps be defined as

Clj(t):P(Ol,...,Ot,l'(t):j|Ps). (18)

That is, a;(t) is the joint probability of observing the
first t motion elements and being in state j at time t.
This forward probability can be efficiently calculated
by the following recursion:

(i) =1 (19)

N
Oét+1(j) = lz at(i)aij] bj(0t+1) (20)

a;(i) = arbj(o1) (21)

N
P(O|A,B) = Z ai(T) (22)

A.3 Learning of discrete HMM parameters
To calculate the HMM parameters A = {a;;}, B =

{bi;} when observation sequence O is given,

a¢(i)aijb;(0i41)Be+1(J) 23
Zﬁil ar (i) 2

’Yt(lv.]) =

N
V(i) = Z%(i,j) (24)

are firstly defined. After that, new parameters are
estimated using following EM algorithms.

t; = y1(i) (25)

D HRECY)
B Y0
bigy = L"’Tt = %.( 2
thl ¥ ()
After that, parameter update is executed using follow-

ing equations. The inference by Eq. (25),(26)and(27)
are repeated till the value would be converged.

(26)

(27)

T=7 (28)
aij = a/ij (29)
biky = i) (30)

Above processes are called as Baum-Welch algorithms.

A.4 Learning of continuous HMMs

In case of continuous HMMs, Baum-Welch algo-
rithms are used as well as discrete HMMs.

D DD Sy T ()1
S ST Lim(t) (31
- S Lim () (0 — 1) (00 — 1)

Yim = S ST 1o (32)

X S Lim(t)
e Zf:l 25:1 ij(t) (33)
where )
Li(t) = POAB)Y (t)3,(t) (34)

N—1
a;(t) = { > ailt - 1)%‘} bj(or) (35)

=2



N-1
Bi(t) = Y aijbj(0141)B;(t + 1)
j=2
with initial condition:

a(l)y=1

N—-1
B(1) = Z Gljbj(01)ﬁj(1)-
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