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Abstract

Memory of motion patterns as data, comparison of a
new motion pattern with the data, and playback of one
from the data are inevitably involved in the informa-
tion processing of intelligent robot systems. Such com-
putation forms the computational foundation of learn-
ing, acquisition, recognition, and generation process of
intelligent robotic systems. In this paper, we propose
to apply the continuous hidden Markov model to es-
tablish the computational foundation, using which one
obtains the specified number of keyframes and the their
probability distributions. The keyframes are optimally
selected to mazimize the likelihood. The probability dis-
tributions are to be used to compute comparison and
playback. The proposed method is applied to the mo-
tion data of a humanoid robot as well as the time series
image data, and its validity is to be discussed.

1 Introduction

Memory of motion patterns as data, comparison of
a new motion pattern with the data, and playback of
one from the data are inevitably involved in the infor-
mation processing of intelligent robot systems. Such
computation forms the computational foundation of
learning, acquisition, recognition, and generation pro-
cess of intelligent robotic systems. Motion patterns
along with temporal sensory data would be appropri-
ate to describe behaviors of a robot. This is the com-
putational problem of time series data and the subject
of the present paper.

The computational problem of time series data
would need to consider: (1) efficiency of data compres-
sion/decompression, and (2) unification of algorithms
for memory (compression), comparison and playback
(decompression). The former is mandatory since it de-
termines the volume of database of motion patterns.
The latter is not a must, but an important requirement,
to maintain consistency of the three kinds of compu-
tation.

As the regression techniques of time series data,

the literature includes the principal component analy-
sis (PCA) [1], and the nonlinear principal component
analysis (NPCA) [2]. The both techniques compress
the data in the configuration space, but not along the
temporal axis.

More recently, different approaches were made for
space-time compression from the dynamical point of
view. Okada et al.[3] and Ijspeert[4] proposed to mem-
ory as a vector field that involves the approximated
motion pattern as an attractor. Though less synthetic,
a similar approach can be made using an associative
memory of recurrent neural network [5]. It is note-
worthy that the dynamics based memory can easily
compute comparison and playback as well.

A straightforward approach of space-time compres-
sion is to determine a limited number of configurations,
namely the keyframes, and their temporal positions.
The degree of compression can be arbitrary adjusted
by setting the number of configurations. The idea was
used in the framework of reinforcement learning [6] and
simplified the learning computation. The open prob-
lems of this straightforward approach are (1) to set a
criterion to determine configurations, and (2) to es-
tablish a unified computational algorithm of memory,
comparison, and playback

In this paper, we propose to apply the continuous
hidden Markov model (CHMM) to solve the two open
problems simultaneously. The hidden Markov model
(HMM) is a doubly structured probabilistic process
and has been successfully applied to speech recogni-
tion. The field of applications of HMM is growing.
However, the role of computation, to the best of the
authors’ knowledge, is placed at recognition only[7]
[8][9]. Using CHMM, one obtains the specified number
of keyframes and the their probability distributions.
The keyframes are optimally selected to maximize the
likelihood by executing the EM algorithm. The proba-
bility distributions are to be used to compute compar-
ison and playback. The proposed method is applied
to the motion data of a humanoid robot as well as
the time series image data, and its validity is to be
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Figure 1: Continuous Hidden Markov Models and
Time-Series Data

discussed.

2 Keyframe Compression of Time Series
Data

2.1 Continuous Hidden Markov Models

The hidden Markov model (HMM) is a probabilis-
tic modeling method and deduces a probabilistic dy-
namical system that generates the given input data.
The HMM consists of a finite number of states S =
{s1,...,sn} and a finite number of connection arcs be-
tween each state node. In this framework, state tran-
sition occurs probabilistically and delivers a sequence
of multi-dimensional vectors as shown in Fig.1.

The probability of the state transition from s; to
s; is represented by a;;, Matrix A = {a;;} is called
the state transition probability matrix. Delivery of the
multi-dimensional vectors also occurs probabilistically.
The process, therefore, is sometimes explained as a
doubly probabilistic process.

In the continuous hidden Markov model (CHMM),
the domain of output is the continuous vector space,
in which any vector possibly becomes an output. The
output is determined by the probability density func-
tion, which is commonly represented by linear combi-
nation of the Gaussian functions as follows:

M
bi(0) =Y cijiNij (05 i, Bij) (1)
7j=1

where b;(0) is the output probability density function
that relates continuous output vector o with the i-th
state node s;. M indicates the number of Gaussian
functions used to represent the output probability den-

sity function. N'(0; u, ) is the Gaussian function:

exp {~1(0 - W)= (0 - )}
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where ¥, u, C = {c¢;;} and D respectively represent
the covariance matrix, the mean vector, the mixture
coefficient, and the dimension of continuous vector o.

The continuous HMM is completely determined by
a set of parameter {m, A, ¢, u,3}. 7 is the initial dis-
tribution of the starting node. In this paper, 7w has
no significance since we adopt the left-to-right model
as the structure of state transition network. In the
left-to-right model, state transition always starts at
the first node, thus the 7 always be (1,0,...,0). All
the parameters are computed using the Baum-Welch
algorithm[10].

2.2 Definition of keyframes

We would like to draw an attention to the meaning
of the mean vectors of the Gaussian functions. From
the experimental observation we found that pairs of
the Gaussian function and its mean vector tend to lo-
cate on or near the space-time trajectory of the in-
put data, more interestingly, where they well repre-
sent the trajectory as shown in Fig.2. We will discuss
this point based on the experimental data in section 4
and 5. This is, however, not surprising and a natural
consequence since the Baum-Welch algorithm deter-
mines the parameters so that they stochastically best
characterize the input data trajectory. This allows us
to consider the mean vectors as the keyframes of the
trajectory. More details on this matter are in section
2.2.

Therefore, we divide the parameters of continuous
HMM, namely, the dynamical parameter A and the
keyframe parameter u as follows.

def

A={Ac} (3)

def
u = {p,%} (4)
The number of ketframes obviously coincides with that

of the Gaussian distributions, and it is reserved for us
as a free design parameter.

Computation of memory (compression) for
learning and aquisition Memory computation is
to compute the parameters of CHMM (A = {4, B}).
It implies the data compression of time series data as
we have already viewed. A simple learning algorithm
could be to recover a single set of parameters from the
database of many trials of the same motion pattern,
for example. One could develop a much sophisticated



Figure 2: Gaussian distribution and state space

learning or acquisition algorithm based on the mem-
ory computation. The practice of memory computa-
tion can be done by one of the expectation-maximizing
(EM) algorithms [10], which are well studied and es-
tablished for computational efficiency.

Computation of playback (decompression) for
generation Computation of playback is to generate
a time series of data from the HMM. This is a com-
plimentary computation of memory computation and,
therefore, corresponds to decomposition. This will be
in detail discussed in the section that follows.

Computation of comparison for recognition
When a new time series of data

O0=1o[l]o[2] ... ofT] (5)

is given, the HMM can compute likelihood (or prob-
ability) p(O|A,u) in which the HMM with A, u actu-
ally generates O. This computation is done by a well-
known forward algorithm [10]. The likelihood is larger
if the new data is close to the original data used for
memory computation. It is smaller if it is far from
the original data. Accordingly, one can compare a
time series of data with the other data. Such compar-
ison straightforwardly offers the means of recognition
of similar time series data.

3 Averaging Method for Computation of
Playback (Decomposition)

In this section, we develop an algorithm for the com-
putation of playback in addition to the other two com-
putations explained in the previous section. Although
the HMM intrinsically holds the original time series
data within the parameters, reproducing it from the
parameter is not trivial.

It is direct and involves less computation to follow
the double stochastic processes to generate a time se-
ries of data from the given HMM.

Here, there are sway among each reproduction pro-
cesses because of the property of stochastic models.
The time length of the motions T; always changes by
the state transition probability A, the value for each
moment of the time-series data also always changes by
the output probability b;(0). We propose an average
strategy in order to cancel these sway.

stepl Getting a state transition sequence Q =
I:Sk[l]ask[Q]a ) Sk[T]]a (k[l] € {17 2,..., N}) with
a trial of the state transition process.

step2 An average of transition sequence Q is calcu-
lated by n, times repetition (Q,- -, an) of the
stepl.

step3 Output time-series data O is calculated by a
trial of output according to the average transition
sequence Q.

step4 Oq,---,0,, is calculated by n, times repeti-
tion from stepl to step3.

step5 Average time-series data O is calculated by
the Oq,---,0,,, after regularization of the time
length.

where ng4,n, are decided experimentally.

In the step2, the average process treats discrete
state transition as continuous time-series function,
which we call as continuous state transition. The func-
tion ¢ is designed using interpolation of following set
of discrete values.

qi(At - j) = k[j] (6)

¢ which is the average of ¢ is calculated after the cal-
culation of time canonicalization ¢'.

() = ;(Ti - 7) (7)

~—
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Figure 3: Original time-series data and generated
data

where At is time step length which is corresponds to
each state transition, 7 is a parameter for time canon-
icalization (0 < 7 < 1), j is the discrete time index.
Finally, Q is calculated by integer approximation and
time length decomposition as follows

PR 1
T:Z:Ti-g. (9)

Figure 3 shows the example decomposition result
using the method. Target data is joint angle data of
a humanoid robot. The dot-line indicates the original
time-series data, the dashed line indicates a result of
single output trial (Q;). There are deviance for time
direction and value direction, however, the deviance
for time direction was canceled using Step2, and the
deviance for value direction was also canceled using
step5. Final output result is shown as solid line. As
the figure shows, output time-series data is similar to
the original time-series data.

4 Application for Whole-body Motion of
Humanoids

To describe the whole body motion, we have
adopted simple joint angles for each moment as a
keyframe, that is, the keyframe elements are repre-
sented as follows:

u (01,0,,...,0p)7, (10)

where D is the number of joints which corresponds to
the D in Eq.2. A humanoid robot shown in Fig.4 is

& 5 = 4 ; (L
Figure 6: Observed humans’ stepping performance
(upper), and a result of step motion generation on a

real humanoid robot (lower)

used for the application. The humanoid has 20 joints,
thus the number of dimension of the keyframe D is 20.

We have confirmed the performance of our method
for imitation learning framework which have been pro-
posed by us [11]. Four kinds of motions; walking,
squat, picking up, and Cossack dancing, were recorded
by a motion capturing system. Using the system, joint
angle data for 20 DOFs are directly observed. The
time period of each motion is about 2[sec] with sam-
pling time 20[msec].

After the 50 observations, motion generation process
is executed. Figure 5 shows the acquired keyframes.
Each dot mark indicate the keyframes, solid line indi-
cate the original motion’s trajectory. It is difficult to
represent the whole dimension, three joints; hip(pitch
axis), knee and ankle(pitch axis) are drawn.

As the figure shows, the keyframes are located near
the original motion. Additionally, keyframes are apt to
be distributed to important and impressive state point
like a turning point of the motion. These properties
show the advantage of our method.

Using the method, we also performed the imitation
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Figure 5: A result of motion elements acquisition against four kinds of motion

learning experiment against humans’ stepping motions
as shown in Fig.6. Lower of the figure shows experi-
mental result on a humanoid robot.

5 Application for time-series image

Next, we have applied the proposed framework to
time-series image processing. A target task is recogni-
tion of time-series image data and navigation on mo-
bile robots.

As the size of image for each sampling time is N x M
[pixels], the size of output vector o; for continuous
HMMs becomes N x M. Under the condition, the
impressive elements becomes as follows

Inym

where I;; indicates the brightness on (i, j) pixel.

As an experiment, image sequence shown in Fig.7
have been captured during running in corridor envi-
ronment by manual operation. The size of the image
is N = 32,M = 32, then D the size of image vector

for each moment is 1024. A continuous HMM which
has five nodes and four mixture components for each
node, was learnt. The time cost for the learning was
about 3 [min].

Acquired view keyframes are shown in Fig.8. Im-
pressive scene such as when the robot pass through
by the door, when the robot observed a light, when
the inside of the room started to be seen, are acquired
by the continuous HMM. There scene image can be
applied to not only recognition process but also nav-
igation task and saving memory using by a method
proposed in [12].

One of the weakness of movie playing using MPEG is
that integration from beginning image is needed when
the user try to play from any frame. Owing to the
proposed method, effective playing might be executed
using keyframe representation and dynamics decom-
position using HMMs.

6 Conclusions

In this paper, we proposed that the Hidden Markov
Models which usually used as a recognition tool, can
be applied to compression of time-series data. In this
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Figure 7: Observed image data on a mobile robot

method, not only data compression but also choos-
ing impressive moment and design the keyframe for
the recognition is performed, because the advantage of
dynamics approach that dynamics information is con-
tained in the compression representation, and another
advantage of keyframe approach that the impressive
moments are automatically selected for the recogni-
tion and generation of time-series data.

Moreover, not only time-series data recognition, but
also motion generation on humanoid robots and CG
character, and navigation on mobile robots are avail-
able with help of the method through experiments.
Especially, effective result have been acquired that the
method can show good performance against complex
tasks such as navigation task which ought to treats
large size of dimension data. We think the applicable
area would spread over various time-series data pro-
cessing on intelligent robots.

Acknowledgement

This research was supported by the Core Research
for Evolutional Science and Technology (CREST) pro-
gram of the Japan Science and Technology Corpora-
tion (PI: Y. Nakamura).

Figure 8: Acquired image elements
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