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Abstract� Humans� primitive skill of imitative learning is regarded as an origin
of human intelligence because it is said that imitation is fundamental function
for communication and symbol manipulation� He have proposed �mimesis model�
in order to approach to a symbol emergence framework from behavior recogni�
tion	generation for humanoid robots� This �mimesis model� is able to abstract
observed others� behaviors into proto�symbols� to recognize others� behavior us�
ing the proto�symbols� and to generate motion patterns using the proto�symbols
based on a stochastic model� In this paper� we extend the mimesis model to ge�
ometric proto�symbol space which contains relative distance information among
proto�symbols� We also discuss how to generate complex behavior by geometric
proto�symbol manipulation� and how to recognize novel behavior using combina�
tion of the proto�symbols�

� Introduction

Recently� the human behavioral science and the human intelligence have be�
come conspicuous as a real research issue of robotics� Although the moti�
vation of the arti�cial intelligence originated there� the physical limitations
have forced or justi�ed the researchers to carry on their research in a limited
scope and scale of complexity� It ought to be the major challenge of contem�
porary robotics to study robotic behaviors and intelligence in the full scale
of complexity mutually sharing research outcomes and hypotheses with the
human behavioral science and human intelligence�

The discovery of mirror neurons��� have been a notable topic of brain sci�
ence which have been found in primates� brain and humans� brain� �re when
the subject observes a speci�c behavior and also �re when the subject start to
act the same behavior� Furthermore� it is located on Broka�s area which has
close relationship between language management� The fact suggests that the
behavior recognition process and behavior generation process are combined
as the same information processing scheme� and the scheme is nothing but
a core engine of symbol manipulation ability� Indeed� in Donald�s �Mime�
sis Theory	�
� ���� it is said that symbol manipulation and communication
ability are founded on the behavior imitation� that is integration of behav�
ior recognition and generation� We believe that a paradigm can be proposed
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taking advantage of the mirror neurons� with considerations of Deacon�s con�
tention��� that the language and brain had evolved each other�

So far� we have proposed a mathematical model that abstracts the whole
body motions as symbols� generates motion patterns from the symbols� and
distinguishes motion patterns based on the symbols� In other words� it is
a functional realization of the mirror neurons and the mimesis theory� For
the integration of abstract� recognition and generation� the hidden Markov
model 
HMM� is used� One as observer would view a motion pattern of the
other as the performer� the observer acquires a symbol of the motion pat�
tern� He recognizes similar motion patterns and even generates it by himself�
One HMM is assigned for a kind of behavior� We call the HMM as symbol
representation�

Symbols are required to represent similarity or distance between each
symbol� An example application is symbol manipulation based on the sim�
ilarity or distance information� However� our conventional method have no
way to represent similarity of relationship between each behavior� Therefore�
in this paper� we extend the mimesis model to geometric symbol space which
contains relative distance information among symbols� We also discuss how
to generate complex behavior by geometric symbol manipulation in the sym�
bol space� and how to recognize novel behavior using combination of symbols
by known symbols�

� Hierarchical Mimesis Model

��� Usual mimesis models and its defects

Figure � shows the con�guration of usual mimesis models��� ���� The model
consists of three processing� perception part� generation part and develop�
ment part� In the perception part� observed motion patterns are analyzed
into basic motion elements� Motion elements are low level physical parameter
for short period of time� like joint angle� angular velocity or torque� Others�
motion are represented by the sequence of the element� then the dynamics in
the motion is abstracted as symbol representations� namely HMMs� We have
call such symbol representation as �proto�symbols	�

Here� one defect arises that the relationship between two similar behavior
have been lost when the behavior transfered into proto�symbols� An aspect
of the symbol is that semantic relation exists among symbols� contrary to the
icons and labels which have no relation representation between each elements�
To solve this defect� a hierarchy structure is needed in which the relation in
the lower motion pattern layer will be kept in the higher symbol layer� We
call such structure as �Hierarchical Mimesis Model	� In following sections� we
introduce an mathematical framework for the Hierarchical Mimesis Model�
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��� Hierarchical Mimesis Models

To construct such a hierarchical model� the mathematical framework ought
to be had an ability to treat distance relationship between each behavior
and symbol� and to structure the hierarchic� An conceptual image of such
heirarchical mimesis model is shown in Fig�
� In the model� each proto�symbol
is represented by continuous vector� that is� continuous proto�symbol space
exists above the low level behavior pattern� Using the proto�symbol space�
human�s long term behavior are transfered into trajectory in the space� We
can also abstract the trajectory as a symbol�like representation using the same
HMM� In other words� hierarchical abstract framework can be established
easily based on the HMM� Continous HMM is the adequate way to realize
such a hierarchical structure�
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� Construction of hierarchical proto�symbol space

��� Continuous HMMs and humanoids� motion

We focused on Hidden Markov Models 
HMMs� as mathematical backbone
for such an integration� HMMs are one of stochastic processes which takes
time series data as an input� then outputs a probability that the data is
generated by the model� HMMs is most famous tool as a recognition method
for time series data� especially in speech recognition �eld� HMMs consist
of a �nite set of states Q � fq�� � � � � qNg� a �nite set of output vectors S �
fo�� � � � � oMg� a state transition probability matrixA � faijg 
the probability
of state transition from qi to qj�� an output probability matrix B � fbijg�
and an initial distribution vector � � f�ig� that is a set of parameter � �
fQ�S�A�B��g� In this framework� state transition and output processes
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are performed probabilistically� then sequence of vectors are output during
the transition as shown in Fig��� The vector may be a discrete label� or
be a vector� In the case of label� the HMMs are called as discrete HMMs
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DHMMs�� In another case of vector� the HMMs are called as continuous
HMMs 
CHMMs� as shown in Fig���

��� De�nition of distance between HMMs

Through distance is needed for construction of space� distance between two
HMMs is not able to be de�ned easily because it is stochastic model� For such
stochastic modes� there is a method in order to express the distance informa�
tion� In this paper� we adopt Kullback�Leibler information as the representa�
tion of distance between HMMs� To say strictly� the Kullback�Leibler infor�
mation is not distance because it does not satisfy the property of the distance�
triangle inequality and symmetry� therefore we call the Kullback�Leibler in�
formation as degree of similarity of the HMMs� The Kullback�Leibler infor�
mation against two stochastic models p� and p� is de�ned as follows�

D
p�� p�� �

Z
�

��

�
p�
x� log

p�
x�

p�
x�

�
dx 
��

To apply the Eq�
�� to HMMs� following equation is usually used��� �

D 
��� ��� �
X
n

�

Tn

�
logP 
yT� j���� logP 
yT� j���

�


�

As the Eq�

� does not satisfy the distance axiom� we use following improved
information�

Ds
��� ��� �
�




D 
��� ��� �D 
��� ���� 
��

��� Construction of space based on similarity

In order to construct proto�symbol space from the distance information� mul�
tidimensional scaling 
MDS� is used� MDS is a method that accepts distance
information among elements and outputs position of each element in the gen�
erated space� Let the similarity between i�th element and j�th element as fij �
the distance between i�th and j�th element as dij � MDS makes the following
error to be minimum for the space construction�

S� �
X
i�j


fij � dij�
� 
��

In the case of HMMs� Kullback�Leibler information Ds is used for the
similarity fij � Let the position of each HMMs as x � fx�� x�� � � � � xng where
n is the number of dimension of the space� Using least�squares method� each
position x is calculated�

We con�rmed the performance of the proposed space construction method
against six kinds of motion shown in Fig��� At �rst� we gave �� dimensional
vector for each fx�� x�� � � � � xng� Figure � shows the constructed space and
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Fig� �� Result of proto�symbol space construction
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Fig� �� Six motions performed by human� �a� walk� �b� stretch� �c� kick� �d� squat�
�e� throw and �f� stoop�

location of each proto�symbol 
HMM�� As the diagram indicates� from �rst
to fourth dimensions are e�ectively used for the space construction� however�
the rest of the dimension are not well used� Therefore� we adopted three
dimensional proto�symbol space as shown in Fig���

� Behavior Manipulation by Proto�symbol

Manipulation

��� proto�symbol manipulation

In this paper� symbol manipulation is de�ned as following�

� Generation of novel behavior using known basic motions
� Recognition of novel behavior using known basic motions
� Abstract of novel behavior using know basic motions
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From the view point on the proto�symbol space� above de�nitions can be
interpreted as followings�

� Generation� creating a novel state point and motions using existing state
point of proto�symbols�

� Recognition� recognize a novel sequence of state point� using existing state
point of proto�symbols�

� Abstract� abstract of a novel sequence of state point into meta�proto�
symbol�

A mutual conversion method between motion patterns and symbol rep�
resentation in proto�symbol space have been established up to the previous
section� In this section� proto�symbol manipulation method where generation
and recognition of novel motion are de�ned by simple structure�

��� Generation of novel proto�symbol

Conventional motion generation

We have proposed a motion generation method using HMMs���� In this
method� a sequence of joint angle vectors are generated from a HMM� then
it is transformed into behavior pattern of a humanoid robot�

Figure � shows the generation result from six proto�symbols computed
by human�s performance shown in Fig��� Each generated motion and original
motion have similarities� This result shows the e�ectiveness of the conven�
tional method� however� the method has limitation that generated motions
are alwalys static within the bounds of known proto�symbols�

Novel motion generation using the proto�symbol space

Generation of a novel motion is equal to create a novel proto�symbol� that
is� a state point on the proto�symbol space as combination of existing proto�
symbols� To compute a novel state point from existing proto�symbols� the
following composition regulation is used�

bi
o� �

MX
m��

�cimA
N
�imA

���
imA

�

�

MX
m��


�� ��cimB
N
�imB

���
imB

� 
��

aij � �aijA � 
�� ��aijB 
��

Eq�
�� and Eq�
�� is applied when a novel state point is located on a straight
line connecting the two points 
�A and �B�� When a novel state point doesn�t
fall on any straight lines connecting existing proto�symbols� the parameter is
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composed according to the distance ratio among each known proto�symbol
as follows�

bi
y� �

MX
m��

�

dl
P

l
�
dl

cN
�lim��lim
�
�

aij �

MX
m��

�

dl
P

l
�
dl

alij 
��

where dl is the distance between a novel state point and known proto�symbol
�l� Finally� law�level motion pattern is generated from the state point� using
the method proposed in the paper����
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Figure � shows the result of motion generation by combination of walk
and kick� The lines labeled as �walk	 and �kick	 correspond to normal gen�
eration� Eight lines between the �walk	 and �kick	 mean synthesis motion
with changing the composition parameter � from ��� to ���� The result shows
the e�ectiveness of composition strategy because the synthesis motion has a
similarity to the morphing�

Novel motion generation from state sequence in proto�symbol space

Furthermore� motion generation can be performed against the state transi�
tion sequence in the proto�symbol space� In this paragraph� a motion gener�
ation method in which a state transition sequence have been given�

Let be the state transition as x����x�
�� � � � �x�n�� As a generation method
in which a �xed state point is given in the proto�symbol space is introduced
before� the continuous generation by transitional state points is equivalent to
the average of motions which generated by those state points�

Figure �� shows the outline of the generation process�

In step �� motion patters are generated from each state point in the proto�
symbol space using the proposed method���� In step 
� the time length of all
motion patterns are set to the same value Tc in order to composition� In step �
and �� partial motion patterns are picked up based on the phase information
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for each state point� that is� charging period of time for each state point�
Finally in step �� composite motion pattern are generated�

��� Recognition of novel motion based on proto�symbol

manipulation

Novel motion recognition using the proto�symbol space

The recognition based on proto�symbol space is equivalent to compute a
state point in the proto�symbol space� After the computation� the relationship
between proto�symbols bring about the symbol representation of the novel
motion�

Di�erence between observed motion O and each proto�symbol is repre�
sented as the likelihood P 
Oj�i�� To convert the likelihood into distance
information� the following equation

D
�k � �i� �
X �

T

�
logP 
oTk j�k�� logP 
oTk j�i�

�

��

are used� however� the P 
Oj�O� is not able to be computed before the learn�
ing of the HMM �O � Here� we introduce an approximation for the P 
Oj�O��

Table � shows the logarithm of the likelihood for each motion and proto�
symbol� Diagonal values indicate about from � to 
�� however� the rest show
a very little value� According to the result� we had an assumption that a
novel behavior also follows above empirical rule that�

logP 
Oj�O� � 
�� 
��

Table �� Likelihood of observed motion pattern for each proto�symbols

Observed Behavior Proto�symbol
walk stretch kick squat throw stoop

walk ����� ���
�� ����� ����� ����� �
��


stretch ��
��� ����� ���
� ���
� ����� ����



kick ���

 ��
�� ����� �
��� ���� ���


squat �


� ��
�� ��
�� ���� ��
�� �
�
�

throw ����� �
��� ���

 ����� ����
 ����
�

stoop ����� �����
 ����� ���
� ������ ����

Novel motion recognition as state sequence in proto�symbol space

The outline of novel motion recognition as state sequence in the proto�
symbol space is shown if Fig���

In step �� focusing on the period of time Tspan in the observed motion
pattern O �

�
o� o� � � � oT

�
� Let the cut o� motion pattern be O� �
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h
o��� o�
� � � � o�Tspan�

i
� In step 
� a state point is computed using mentioned

method in the previous paragraph� Next� shift the focus point� and let the
k�th focus point be

Ok �
h
o�� � 
k � �� � Tstep�� � � � �o�� � Tspan � 
k � �� � Tstep

i
� 
���

with increase the index as k � �� 
� � � � �
T���Tspan

Tstep
� �� Finally in step ��

sequence of state point in the proto�symbol space is acquired�

� Experiments

��� Recognition of novel motion

First� recognition in which motion patterns are transfered into a state point
in proto�symbol space� was performed� Two novel motion �throwing with
kicking	 and �stretching with walking	 are target motions� Figure �
 shows
the result of recognition� The squares and triangles are known basic proto�
symbols� The small dots indicates result state points� As the diagram shows�
two dot marks are located on the line between each basic proto�symbol�

Next� a novel motion pattern is transfered into a sequence of state points
in the proto�symbol space using the method mentioned in Sec����� The target
motion is �walking �rst� then shift to kicking	� The result is shown in Fig����
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As the diagram shows� recognized dot marks starts from the proto�symbol of
�walk	� ends at the proto�symbol of �kick	�

��� Generation of novel motion

In this experiment� we have investigate the motion output when a trajectory
is given in the proto�symbol space� As a given trajectory� we prepared simple
line trajectory from the �walking	 state point to the �kicking	 state point�
Figure �� is the result of motion output�

As the �gure shows� motion of the humanoid is adequately controlled as
the symbol manipulation in the proto�symbol space�

� Discussion

	�� Comparison with conventional research

Motion recognition using the HMM is famous method� thus many research are
proposed for gesture recognition or behavior understanding ������� ������
��
however� no research has been existed in which motion is generated from
HMMs� Masuko et al�������� have been proposed a speech parameter gener�
ation method using HMMs� however the generation process is not opposite
direction of the speech recognition process� The most important character�
istic of our method is that the motion recognition and motion generation
process are integrated by only a HMM�

Acquisition and symbolization of motion pattern of robots have been dis�
cussed in Doya�s research��������� In their MOSAIC model� time�series data
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are acquired as sequence of symbol representations� however� the symbol rep�
resentation do not contains dynamics information in the time�series data� In
contrast� our method� the proto�symbol representation contains dynamics in�
formation in motion patterns� Another di�erent issue from Doya�s research is
that the single HMM is acts as recognition and generation model� In Doya�s
MOSAIC model� two modules� prediction module 
for generation� and con�
trol module 
for recognition�� becomes a companion as motion primitive� We
think that single HMM is smarter for abstract as symbol representation�

To integrate recognition process and generation process for time�series
data� some dynamical approach have been proposed��������� In these research�
explicit dynamics like attractor is designed in order to abstract the time�
series data� In conventional research� recurrent neural network is one of the
e�ective way for the dynamics design �����
�� �
���

�� However� it is di�cult
to design symbol representation if these method was adopted as the dynamics
representation� The HMM is e�ective for both dynamics representation and
symbol representation�
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Fig� ��� Generated motion� from walking to kick

Symbol emergence had been tried in conventional research of arti�cial
intelligence� The most di�cult issue of the symbol emergence is how to ma�
nipulate the created symbol representation� contrary to the easiness of symbol
creation� Deacon have proposed the symbol development model ��� as shown
in Fig�

� In his theory� symbolic representation is developed from indexi�
cal level and iconic level� In the indexical level� simple relationship between
a motion pattern and a symbol representation is established� however� rela�
tionship between each symbol and motion pattern is not considered� In the
transitional level� relationship between each symbol is developed as token
combinations� then the relationship between each motion pattern starts to
be constructed� In the �nal level� logical relationship between symbol com�
bined with the physical relationship between motion pattern� Our approach
follows the development model� At the present moment� our method achieved
the transitional level and is going to achieve the �nal symbolic level�
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� Conclusion

To solve the defect of usual mimesis model� that is� impossibility of the sym�
bol manipulation� we introduce hierarchical mimesis model� The hierarchical
model is build on a continuous Hidden Markov Model and distance represen�
tation using Multidimensional scaling method� Continuous Hidden Markov
Model enables the model to generate humanoids� motion naturally as con�
trary direction of the motion recognition� Multidimensional scaling method
enables the model to describing the relationship between each proto�symbol�
namely continuous HMM� Owing to the distance representation� symbol ma�
nipulation is achieved as geometric state manipulation� Through experiments�
following ability is realized� 
�� novel motion can be recognized as combina�
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tion of known motion�s proto�symbols� 

� novel motion can be generated by
combination of known proto�symbols�

Remaining problem is the defectiveness of proto�symbol space� Even if the
median point in the proto�symbol space between two proto�symbols generates
natural motions� the characteristics of the motion is not always similar to
the characteristics of real two motions� The most frequent cause is the proto�
symbol space is not Euclid space� Toward the issue� we think that information
geometry would achieve the desired e�ect�
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