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Abstract

Since a humanoid robot takes the morphology of human,
users as pilots will intuitively expect that they can freely ma-
nipulate the humanoid extremities. However, it is difficult to
simultaneously issue such multiple control inputsto the whole
body with simple devices. It isuseful for motion pattern gener-
ation to get mapping functions bidirectionally between a large
number of control inputs for a humanoid robot and a small
number of control inputsthat a user can intentionally operate.

For the purpose of generation of voluntary movement of hu-
manoid extremities, we introduce hierarchical NLPCA neural
networks that forms low dimensional variables out of multi-
variate inputs of joint angles. The problemis to find common
space that affords unified manipulable variables not only for
specific motion like walk but also multiple whole body motion
patterns. The interesting result is shown that 1 dimensional
inputs can generate an approximate walking pattern, and also
3 dimensional inputs does 9 types of motion patterns.

1 Introduction

For the generation of multiple humanoid motion patterns,
robotics has embraced the approach that let users direct the
types of behavior like walk or raise-its-hands. It is certain that
this method provides good operability and the development of
some specific motions like biped walk have succeeded. With
this kind of method, however, we are obliged to start on the
premise that discrete motion representations are made up first
as a means of user interface and then the commanded mo-
tions are autonomously executed. Most of the researches on
this standpoint seem suffering from the mounting diversity
of behavior of high degrees of freedom robot(DOF), such as
HOAP-1*[1] or ROBOVIEf[2]. To begin with, since a hu-
manoid robot takes the morphology of human, users will in-
tuitively expect that they can freely manipulate the humanoid
extremities when try to control as pilots. Then it is more obedi-
ent idea that robotics should provide methods that can generate
movements of those extremities with some continuous manip-
ulable inputs, in stead of bothering how to divide behavior into
discrete motion patterns. This approach is more essential for
motion pattern processing[3].

*A humanoid robot by Fujitsu Automation Ltd. that has 4DOF for each
arm and 6DOF for each leg, that is totary 20 DOF.

tA dual-arm manipulator fixed to trunk of a mobile robot by Advanced
Telecommunications Research Institute Int. that has totally 11 DOF including
head movement of 3DOF
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The problem of whole body motion pattern processing is its
high DOF. Human have at least much high dimensions than
brain can intentionally operate because the vector of muscle
activation have the same dimensions as the number of its re-
lated muscle. For all these numerous variables, human brain
still does operate voluntary movement in quite stable. In this
sense, dimensionality reduction must be essential for motion
pattern processing[4]. As for a humanoid robot, it is true that
motion capture system can afford many simultaneous inputs
for humanoid robot manipulation[5]; on the other hand, in-
stead of using such large scale measurement facilities, gener-
ating voluntary movement of its extremities with a small num-
ber of control inputs, e.g. given by a joystick, can be alter-
native techniques. Then an interesting problem is how highly
abstracted data and raw sensorimotor data tie up each other.

This paper describes the hierarchical NLPCA neural net-
works that perform dimensionality reduction and reproduc-
tion for whole body motion patterns on a humanoid robot.
The important result is that low dimensional common space is
formed, which affords unified manipulable inputs not only for
specific motion like walk but also for multiple motion patterns.
This approach is useful to manipulate humanoid behavior from
the engineering standpoint, and also interesting to consider the
analogy what kind of internal representation human manipu-
lates from a neurophysiologic standpoint.

2 Groundsfor Dimensionality Reduction
2.1 Key Idea: Data Correlation on Kinematic Constraints

Since a wind-up mechanical doll makes the most use of
kinematic constraints on its linkage, the movements of joints
are entrained to the workings of one cam. If observation of the
correlation among joint angles estimates the structure of the
cam, various motions of extremities can be generated by con-
trolling reduced valuables, such as rotating the cam. From a
viewpoint of multivariate analysis, principal component analy-
sis (PCA) is useful in order to estimate the data structure which
has significant correlation, and to convert the data into repre-
sentative variables in lower dimension. Therefore, by applying
PCA to the joint angle space where each joint angle forms a
basis, the low dimensional control variables can be obtained.
At this time, conventional PCA is not enough for dimension-
ality reduction because the data will have strongly nonlinear
correlation especially for multiple motion patterns; some non-
linear techniques are required.
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2.2 Representation of Humanoid Motion Patterns

The arbitrary posture of a humanoid robot that has NV joints
can be represented as N-dimensional vector « in the joint an-
gle space J C RM. The whole body motion pattern is ex-
pressed as consecutive orbit O; = {@1,®2, --} in J if the
pattern is regarded as a set of momentary snapshots of pos-
ture. This @4 lies on some hyper curved surface S from a
kinematic constraint of the humanoid robot. If S is modeled
by the M nonlinear bases which form space R C R, then
O are to be represented as Oz € R. While the number of
the nonlinear bases M is generally fewer than the N joints, the
dimensions of Q% decrease. If this lower dimensional space
R preserves the topology of 7, then O % will still be consecu-
tive orbit.
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Fig. 1: The left/right side layer denotes input/output layer of NLPCA
neural network. The first half layers take role of injection and
the latter half ones do projection.

2.3 The Functions of NLPCA Neural Network

The auto-associating feed forward neural network illus-
trated in Fig. 1 performs Principal Components Analysis with
Non-Linear bases, so called NLPCA[6]. This NLPCA neural
network, whose input and output layers have the same num-
ber of units, learns to approximate a function g which realizes
identity mapping for given data set:

& = g(x,) 1)

where x; denotes i-th vector of O, and g denotes the ap-
proximate function of ¢. The squared error ¢; = ||&; — 2|? is
minimized by descent steepest method with the weight param-
eters w which connect units among layers. Here, ||-]| means
the norm. By passing through the middle hidden layer which
has fewer number of units M (feature layer) than the num-
ber of input or output units &V, data =; € R is injected into
x} € RM and then re-projected on z; € R™. That is, if we
denote g = h; o h,,, the neural network has a good property of
finding h; that injects O s onto S and h,, that re-projects Or
onto surrounding O 7 by just evaluating the magnitude of ¢;:

' = hi(e) = flwinf(wie)) 2
& = hy(a') = f(wpaf(wpiz')) ®3)

where w;1, w;s, wp1 and wy, are weight matrices between
two layers, and described from input layer to output layer in
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order. For notational clarity, f of a’ = f(a) denotes a vec-
tor function: each element of a’ € RX is a sigmoidal output
of the corresponding element of the same dimensional vector
a € RX. Equations above are in the case of 5 layers net-
work as shown in Fig. 1. From sigmoidal continuity of f, if
some two x; are close each other, NLPCA neural network will
maintain the topological relationship between corresponding
two ;. Hence consecutive orbit @ tends to inject into con-
secutive orbit O%. This continuity is important for the manip-
ulation of humanoid robot.

Our NLPCA neural network is sensitive to the range (0, 1)
for each activation value from the characteristics of sigmoid
function f. For the nonlinear optimization to work well, ap-
propriate scaling factor in input and output layer is required.
There are many statistical solutions for normalization, e.g.
subtracting the mean and dividing by variance of data. In this
paper, we just used interior division between maximum and
minimum of data for experimental result: in the input layer of
neural network, any activation value is scaled within (0, 1) as
linearly interior dividing point, and then the activation value
of output layer scale back to original data range.
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Fig. 2: The left is the semilog plot of singular value of motion pattern
walk. The right shows the norm of residual error to compare
reproduction power between PCA and NLPCA. The vertical
error bar on NLPCA shows the dispersion of ten trials and
the asterisks are their average.

2.4 Comparison between NLPCA and PCA

The property of NLPCA neural network is analogous to
PCA: PCA firstly arranges one linear basis as the first principal
axis to minimize information loss, that is equal to maximizes
the variance, in data space, and then reduces the residual error
with the second or more principal axes. The main difference
is that NLPCA adopt nonlinear bases for the principal axes.

When a NLPCA neural network learns with one unit in the
feature layer (thatis A/ = 1), the activation value in the feature
layer takes a role of first principal component. At this time,
such a nonlinear basis as the principal axis is selected:

1. the direction that enlarge the variance

2. the magnitude that normalize the distribution within the
range (0,1) inR

Here we asume M = k, and let the reduced vector with Eq. (2)
for @; be ®&* = (x4}, x4, -+, z;,) and let the regenerated
data with Eq. (3) for «/* be :cf . Then the mean squred residual
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Fig. 3: A design of hierarchical NLPCA neural networks. Two pathways are separately illustrated based on the difference of the functional

aspects. The arc implies the flow of the signal transfer.
error of the identity mapping F, is
Bo= 23k — @
=22 ; i
1

where n is the number of samples. Given an additional unitin
the feature layer, NLPCA neural network learns to absorb the
residual error of the first principal component F; by adjust-
ing only the weights connected to the additional unit. When
the learning converged, the activation value of the second unit
x;% takes a role of the second principal component of «,. By
adding units in the feature layer repeatedly, the k-th principal
component z;;. can be obtained.

Here we describe that NLPCA suit for low dimensional rep-
resentation of whole body motion patterns better than PCA.
We first prepared a motion pattern walk Oy’“ that has physi-
cal consistency on HOAP-1. Oy’“ isa 20 x 1080 matrix sam-
pled by every 5 msec: starts from standing position, takes 3
steps forward ( left - right - left ), and then returns to the ini-
tial standing position. The external appearance is shown in
the top of Fig. 8. We tested the performance between NLPCA
neural network and PCA for this data. PCA is computation-
ally done by singular value decomposition. The left of Fig. 2
shows computed singular values for the matrix ©%*!. Observe
that the exact rank of this matrix is given by the drop of the
curve. Inthis case, the rank is 9. That means the first 9 x 1080
matrix gives the almost perfect approximation of O %**.

The right of Fig. 2 shows the comparison of the power of
dimensionality reduction between PCA and NLPCA. By ex-
amining the mean of the residual error ||z¥ — ;|| shown in the
ordinate of the figure, it is shown that NLPCA gives more pre-

cise approximation of identity mapping than PCA: the first 7
principal components with PCA are equivalent to 3 ones with
NLPCA. The reason why the convergence of NLPCA levels
off from 3D is that the lowest residue depends on learning rate
n for iterative learning. This » cannot be too high because
it never converges, nor can it be too low because it gets into
local minima easily. The architecture of used NLPCA neural
network consisted of almost the same one as Fig. 1: a single
network with 20 units in input/output layer and 24 units in
hidden layer, and only the number of units in the feature layer
varies from 1 to 10. 5 was set to 0.03. A general error back
propagation algorithm is used for a descent steepest method.

3 Hierarchical NLPCA Neural Networks
3.1 TheAlgorithm : Learning and Signal Transfer

In order to suppress the bias and improve the convergency
when two or more motion patterns are learned, we arrange
several NLPCA neural networks hierarchically by each level
as shown in Fig. 3. This hierarchical NLPCA neural networks
works as a system for bidirectional conversion between low
dimensional variables and multivariate variables. We briefly
describe the algorithm of signal transfer below.

Firstly, independent four NLPCA neural networks are as-
signed to each of the arms and legs, and then each network is
trained to learn the identity mapping. Here, let these networks
which directly transfer sensorimotor signals are the bottom
level and the others are superior level. Secondly, after each
joint angle «; is reduced to «’ by Eq. (2), the activation value
of the feature layer =’ is referred to as an input «; of superior
neural network, and the superior neural network also learns
the identity mapping for the reference input. Lastly, by repeat-
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ing a similar procedure, reduced variables are obtained in the
feature layer of superior neural network if learning converged.
In this way, the former half of each NLPCA neural network is
assigned to sensory pathway. Symmetrically, the latter half is
used as descending pathway by following algorithm.

In the top level, the data =/ which is directly pushed into the
feature layer reproduce &; in the output layer by Eq. (3). This
@; is projected into feature layer of inferior neural networks
as @;. This procedure is repeated until z; in 7 be finally ob-
tained in the output layer of the bottom level NLPCA neural
networks.

3.2 The Biological Plausibility

As for human nervous system, voluntary movement of the
extremities is controlled by many descending and sensory
pathway. Descending pathway is composed of motor neuron
that transfers motor command towards motor endplate for mo-
tion execution. Sensory pathway transfers the consequence
of motion execution back to motor neuron or superior central
nerve. Therefore, to execute intentional behavior, activity in
descending and sensory pathway must interact with well each
other[7]. The fact has become clear that some spinal interneu-
rons form groups depend on the projection-pathway, and those
spinal interneurons receive input from both pathways and give
activation relevant to motor command[8]. We do not intend
to propose an imprudent hypothesis that our NLPCA method
provides the model of spinal interneuron, but intend to bring
evidence that hierarchical architecture has some reasonable bi-
ological functions as:

1. There exist a small number of group neurons that con-
nects central nerves with functionally related muscles.

2. The spinal cord cannot be viewed as a simple relay of
supraspinal motor commands to the periphery: the or-
ganization of spinal motor system will place strong con-
straints on the production of movement by supraspinal
systems.

3. The efficiency of synaptic transmission of sensory path-
way and descending pathway are turned cooperatively.

The feature point of our model is that some learning mod-
ules are prepared for the extremities and form sensory and de-
scending pathway as a total system. And though both path-
ways are independent in each module, the synaptic weights are
tuned in a couple while learning. Each module mutually ex-
change multivariate data and reduced data of motor command:
raw data are converted into statistically significant informa-
tion when transferred to superior modules, and the descend-
ing path is simultaneously maintained to reproduce fertile raw
data. This is interesting because, even if the conversion from
low dimensional data to high dimensional data does not have
a unique solution, our model gives some useful, if not opti-
mal, solution at any rate. This function mirrors certain aspect
how humans learn their voluntary movement in the sense of
procedural memory.
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4 Internal Representation of Multiple Motion Patterns
4.1 Learning aUnique Motion Pattern “Walk”

We now apply hierarchical NLPCA neural networks to di-
mensionality reduction of motion patterns. The question is
whether this can find some convenient low-dimensional rep-
resentation of the data. We first prepared the hierarchical
NLPCA neural networks which are almost the same structure
as Fig. 3 except that only one unit is used in the feature layer
at the top level of hierarchical NLPCA. The input (and also
training target) is (’)’f;’“ used in section 2.4 The top diagram
of Fig. 4 shows one dimensional internal representation ¢ %+1
correspond to Og’“ 1. The ordinate denotes =/ against the step
i of the abscissa.
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Fig. 4: Internal representation of walk (top) and its external appear-
ance (middle) compared to its original attitude (bottom).

The middle picture of Fig. 4 shows the humanoid attitude
generated from = = 0.41, x%5, = 0.62, @)gs = 0.22,
x43, = 0.35, and the bottom one shows the corresponding
original attitudes. Since kicking motion of supporting leg and
swinging back motion of the same lifted leg are close in 7,
the similar posture is injected into the same point in exces-
sively reduced space R. Therefore the switching phase of the
supporting leg almost synchronizes with turning value of the
orbit in R. If the motion pattern “walk” is interpreted as a
periodic motion with symmetric property, consequentially the
hierarchical NLPCA neural networks extracted R that reflects
its phase. This experimental result describes that appearance
of periodic motion pattern can be generated by fluctuation of
only one control variable with an appropriate nonlinear basis.
Moreover, we found that such a basis can be acquired through
a simple learning algorithm.

4.2 Learning Multiple Motion Patterns of Walk

We examined how the internal representation changes in
the low dimensional space as motion patterns to be learned
increase. In addition to the result of Fig. 4, that is just one
walk pattern is learned, other 4 types of walk patterns are pre-
pared; walk with bend forward 0;’3’“2, walk with bend back-
ward O%*3, walk with short @%** and stride O%*5(Fig. 5).
These motion patterns are created by converting human pos-



ture with the motion capturing system into the joint angle
based on the kinematics of the humanoid robot HOAP-1[5].
The hierarchical NLPCA neural networks learn one set of data
composed of O (p = wk1, wk2, ..., wk5).
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Fig. 5: The state of varying internal representation with increment
of captured walk patterns.

In case that the second walk pattern (’)’j;’“2 is additionaly
learnd, those two reduced orbits distributed away from each
other (the top-left of Fig. 5). This means that between-class
variance of O%** and 0%** is large in the scale of whole data
set and the relationship is reflected on the first principal axis.
The top-right of Fig. 5 also gives an expected result for O %%3,
In the bottom of the same figure, we see that (’)%’“4 traces near
O%*? and O%*5 does near 0%*?; these patterns resemble each
other also in external appearance. Hence hierarchical NLPCA
neural networks has a characteristics that provide a quantita-
tive evaluation of the similarity among motion patterns. On
the other hand, we also notice transition that the distribution
of O%*1 is shifted from area (0.2, 0.6) to (0.0, 0.2) with ad-
dition of walk patterns. This result indicates that the variety
of multiple motion patterns leads localization for respective
patterns.

4.3 Learning Various Typesof Humanoid Motion Patterns

From the examination above, if the hierarchical NLPCA
neural networks are trained more with various motion pat-
terns, NLPCA will localize every pattern in its reduced space,
and will find the topological relationship that similar patterns
come near and different ones distribute away each other. So in
addition to the result of Fig. 5, we train the neural networks to
learn swing 0%, throw O}, kick O%¢ and squat 0’7 (Fig. 6).
The right column part of the figure shows the humanoid atti-
tudes that correspond to each &’ whose value is described by
top-left number in the picture.

The remarkable point is that all walk patterns by motion
capture are injected into a specific area (0.4, 0.6) and occupy
this area. This means, since excessive reduction exclude the
redundancy of the variety of original walk patterns, any pos-
ture looks like walk is injected into this area. The bottom
of Fig. 6 shows the humanoid postures in this area. We con-

firm that «; = 0.4, 0.5, 0.6 represent right-step-forward, neu-
tral and left-step-forward in order, so that a rough walk pattern
by motion capture can be produced by tracing sine curve in
(0.4,0.6). In fact, observation of the posture to and fro re-
minds us of walking behavior.
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Fig. 6: Internal representation of each motion pattern and corre-
sponding attitude of humanoid robot.
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The result above is interesting because different types of
motion patterns never cross each other in their internal repre-
sentation, even though such decay can easily be estimated that
some of motion representations might pass all over the space
‘R. This result cannot be achieved by PCA because most of
motion representations crossed over each other.

We noticed that walk pattern O%*! is injected apart from
the other walk patterns. The external appearance of the
regenarated motion from @%*! is shown in the middle of
Fig.8. The walk patterns by motion capture O”j(p =
wkl, wk2, ..., wkb) are generated just considering kinemati-
cal consistency, whereas 0%** is created considering physi-
cal consistency for biped locomotion in real emvironment. A
twist around hip is important for balancing control to cancel
the adverse yaw; this movement has a great effect on move-
ments of other connected links. This split beetween @ and
0%, might reflect the difference between O%** with the twist
and 0", without one. Though the roundhouse-high-kick O %
that has the kinematical twist (see the attitude of «’ =0.3) had
come nearer than Q%! against O%*1, the experimental result
seemed reasonable in that sense.

4.4 Motion Reproduction by the Internal Representations

As illustrated in the middle of Fig. 8, the hierarchical
NLPCA neural networks can not approximate the identity
mapping well since the neural networks must represent vari-
ous types of motion pattern. In this section, we attempt to im-
prove the accuracy of reproduction of motion patterns while
maintaining the structure of the first principal component de-
scribed in previous section. Here, we assume that the original
variety of motion pattern is to be regenerated by adding a kind
of perturbation terms to the first principal component.
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Fig. 8: External appearances; original walk @ ¥ (top) and the regenerated motions from 1 dimensional internal representation @ %! (middle)

and 3 dimensional one (bottom).

In order to absorb the residual error £, that is caused by ex-
cessive estimation of the underlying dimensionality, when the
neural network with one unit in feature layer in the top level
NLPCA neural network converges, then we add a second unit
and train the neural networks again by following the procedure
introduced in Section 2.4 Note that adding units means adding
control variables for motion pattern generation.
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Fig. 7: Comparison of internal representation between unit-
increment learning(left) and learning with constant number
of units from the beginning(right).

activation value of 2nd unit

The left of Fig.7 shows internal representations of all
motion patterns used in previous section with an additional
unit. For comparison, we also prepared another hierarchical
NLPCA neural networks that has the same structure except
the number of unit in the feature layer is fixed two from the
beginning, and train the neural networks to learn; the right of
the figure shows the internal rerpesentations with the hierar-
chical NLPCA. In the left of the figure the first unit’s value of
the ordinate can be interpreted as the first principal component
that represents approxiamte external appearance of humanoid
robot, and the second one of the abscissa can be interpreted
as the perturbation, whereas the interpretation is unclear in the
right of the figure. The intuitive structure of the formar unit-
incremental learning approach has some advantages over the
latter unit-fixed one from a robot control standpoint.

Additively another unit is trained in the same way after
learning with 2 units had converged. The top of Fig. 8 il-
lustrates external appearance of original Oy’”, the middle
one does the motion pattern regenerated by the 1 dimensional
O%F! as described in previous section and the bottom one does
regenerated motion from the 3 dimensional @%**. Though the
hierarchical NLPCA must produce 9 motion patterns with 3
dimensional internal representations, the identity mapping of
motion patterns is rather precise.

5 Conclusion

This paper presented the hierarchical NLPCA neural net-
works that performs bidirectional mapping between multivari-
ate control inputs and low dimensional internal representation
of humanoid motion patterns. Our approach takes motion pat-
terns as the set of state points in joint angle space. In that
sense, dimensionality reduction of motion patterns is a prob-
lem of finding low dimensional manifold in the high dimen-
sional space. We used NLPCA to overcome the nonlinear-
ity of the manifold. On a 20 DOF humanoid robot, we got
the results that 1 dimensional inputs can generate approximate
walking pattern and 3 dimensional inputs do 9 types of motion
patterns, that is common space of motion patterns.
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