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ABSTRACT

In this paper, we develop a method to impart the

chaotic nature to a mobile robot. The chaotic mobile

robot implies a mobile robot with a controller that

ensures chaotic motions. Chaotic motion is character-

ized by the topological transitivity and the sensitive

dependence on initial conditions. Due to the topo-

logical transitivity, the chaotic mobile robot is guar-

anteed to scan the whole connected workspace. For

scanning motion, the chaotic robot neither requires

the map of workspace nor plans the global motion.

It only requires to measure the local normal of the

workspace boundary when it comes close to it. We

design the controller such that the total dynamics of

mobile robot is represented by the Arnold equation,

which is known to show the chaotic behavior of non-

compressive perfect 
uid. Experimental results and

their analysis illustrate the usefulness of the proposed

controller.
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1 INTRODUCTION

Chaos characterizes one of mysterious rich behav-

iors of nonlinear dynamical systems. A lot of research

e�orts have been paid to establish the mathematical

theory behind chaos. Applications of chaos are also

being studied and include, for example, controlling

chaos[1][2], and chaotic neural networks[3].

This paper proposes a method to impart chaotic

behavior to a mobile robot. This is achieved by de-

signing a controller which ensures chaotic motion.

The topological transitivity � property of chaotic mo-

tions guarantees a complete scan of the whole con-

nected workspace. The proposed scheme neither re-

quires a map of workspace nor plans a path through

it. It only requires the measurement of the local nor-

mal of the boundary when it comes close to it.

� Consider Cr(r � 1) autonomous vector �elds on Rn de-
noted as follows.

_x= f(x)

Let the 
ow generated by this equation be denoted as �(t; x)
and let � � Rn be a invariant compact set for this 
ow. A
closed invariant set � is said to be topologically transitive[5]
if, for any two open sets U; V � �,
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Fig. 2: Mobile robot

A mobile robot with such characteristics may �nd

its applications as a patrol robot or a cleaning robot

in a closed room, 
oor, or building (Fig. 1). The

sensitive dependence on initial condition also yields a

favourable nature as a patrol robot since the scanning

trajectory becomes highly unpredictable.

2 CHAOTIC MOBILE ROBOT WITH
THE ARNOLD EQUATION

2.1 Mobile Robot

As the mathematical model of mobile robots, we as-

sume a two-wheeled mobile robot as shown in Fig. 2.

Let the linear velocity of the robot v[m/s] and the an-

gular velocity ![rad/s] be the inputs to the system.

The state equation of the mobile robot is written as

follows:
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Fig. 3: Poincar�e section of Arnold 
ow (A = 1; B =

0:5; C = 0)
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Fig. 4: Poincar�e section of Arnold 
ow (A = 1; B =

0:5; C = 0:05)

where (x[m]; y[m]) is the position of the robot, �[rad]

is the angle of the robot.

2.2 The Arnold Equation

In order to generate chaotic motions of the mobile

robot, we employ the Arnold equation, which is writ-

ten as follows:0
@ _x1

_x2
_x3

1
A =

0
@ A sinx3 + C cosx2

B sinx1 +A cosx3
C sinx2 +B cosx1

1
A (2)

where A;B and C are constants. The Arnold equa-

tion is one of steady solutions of 3-dimensional Euler

equation:
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which expresses the behaviors of non-compressive

perfect 
uids on a 3-dimensional torus space.

(x1; x2; x3) and (v1; v2; v3) denote the position and

velocity of a particle, and p, (f1; f2; f3) and � denote
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Fig. 5: Poincar�e section of Arnold 
ow (A = 1; B =

0:5; C = 0:5)
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(a) A = 1; B = 0:5;C = 0 (b) A = 1; B = 0:5; C = 0:5

initial state: initial state:

x1 = 0; x2 = 0; x3 = 0 x1 = 4; x2 = 3:5; x3 = 0

Fig. 6: Arnold 
ow

the pressure, external force, and density, respectively.

It is known that the Arnold equation shows periodic

motion when one of the constants, for example C,

is 0 or small, and shows chaotic motion when C is

large[4].

The Poincar�e Section: We compose

Poincar�e sections[5] of the Arnold equation by numer-

ical computation. The results are shown in Figs. 3, 4

and 5. The sections and coe�cients of the Arnold

equation are shown in Table 1. Figures 6(a) and

(b) show trajectories of the Arnold equation in a 3-

dimensional torus space, corresponding to Figs. 3 and

5 respectively.

Figure 3 represents the Poincar�e section when C =

0. It is observed that the topological transitivity

does not emerge in this case, since trajectories in

the Poincar�e section are closed. When jCj exceeds a

Table 1: Parameters for computations

coe�cients section

Fig.3 A = 1; B = 0:5; C = 0

Fig.4 A = 1; B = 0:5; C = 0:05 x2 = 0

Fig.5 A = 1; B = 0:5; C = 0:5
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Fig. 7: Trajectories of the mobile robot in x-y plane

(v = 1; A = 1; B = 0:5; C = 0:5)

certain small number and gets larger, there grow re-

gions in which closed trajectories disappear and scat-

tered discrete points appear. The regions characterize

chaos and its behavior. Since the Arnold equation is

a conservative system, it is an important feature that

the descrete trajectory of a point initially started in

such a region remains there and is never attracted by

the closed trajectories outside the region.

The Lyapunov Exponent: The Lyapunov

exponent is used as a measure of the sensitive depen-

dence on initial conditions, that is one of two charac-

teristics of chaotic behavior[6]. There are n Lyapunov

exponents in an n dimensional state space, and the

system is concluded to have the sensitive dependence

on initial conditions when the maximum Lyapunov

exponent is positive.

We calculated the Lyapunov exponents of the

Arnold equation. The parameters and the initial

states are as follows:

coe�cients : A = 0:5; B = 0:25; C = 0:25

initial states : x1 = 4; x2 = 3:5; x3 = 0

and the Lyapunov exponents are

�1 = 4:3� 10�2

�2 = 1:1� 10�4

�3 = �4:3� 10�2

Since the maximum exponent �1 is positive, the

Arnold equation has the sensitive dependence on ini-

tial conditions.

In case of the Arnold 
ow, the sum of the Lyapunov

exponents, �1+�2+�3, equals zero since the volume

in the state space is conserved. This results in the

fact that a trajectory which started from a chaotic

region will not be attracted into attractors like limit

cycles. The total of the computed Lyapunov expo-

nents became slightly larger than zero, which is due

to the numerical computation error.
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Fig. 8: Mirror mapping

2.3 Implementation of the Arnold Equa-
tion

In order to implement the Arnold equation into the

controller of the mobile robot, we de�ne and use the

following state variables:

8<
:

_x1 = D _y+ C cosx2
_x2 = D _x+B sinx1
x3 = �

(5)

where B;C and D are constants. Substituting Eq. (1)

in the above, we obtain a state equation on x1; x2 and

x3 as follows:8<
:

_x1 = Dv sin � + C cosx2
_x2 = Dv cos � +B sinx1
_x3 = !

(6)

We now design the inputs as follows:

�
v = A

D

! = C sinx2 +B cosx1
(7)

Consequently, the state equation of the mobile robot

becomes0
BBBB@
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_x3
_x

_y

1
CCCCA =

0
BBBB@

A sinx3 + C cosx2
B sinx1 + A cosx3
C sinx2 +B cosx1

v cosx3
v sinx3

1
CCCCA (8)

Equation (8) includes the Arnold equation. The

Arnold equation behaves chaotic or not chaotic de-

pending upon the initial states. We choose the initial

states of the Arnold equation such that the trajectory

should behave chaotic. As explained in section 2.2, it

is guaranteed that a chaotic orbit of the Arnold equa-

tion is not attracted to a limit cycle or a quasiperiodic

orbit.

The whole states evolve in a 5-dimensional space

according to Eq. (8), which includes a 3-dimensional

subspace of the Arnold 
ow. The state evolution in

the two-dimensional complementary space is highly

coupled with that in the three-dimensional subspace
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Fig. 9: Simulated trajectory of the mobile robot in

x-y plane (Environment 1)
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Fig. 10: Simulated trajectory of the mobile robot in

x-y plane (Environment 2)

as seen in Eq. (8). The coupling is physically inter-

preted by the fact that the mobile robot moves with a

constant velocity and being steered by the third vari-

able of the Arnold equation. Although it is likely that

the trajectory in the x-y space also behaves chaotic,

it is di�cult to prove. The nature of the mobile robot

trajectory is to be numerically evaluated in the fol-

lowing section.

Figure 7 shows an example of motions of the mo-

bile robot with the proposed controller, obtained by

numerical simulation. The initial condition was cho-

sen from a region where the Poincar�e section forms

no closed trajectory. It is observed that the motion of

the robot is unpredictable, and sensitively dependent

on initial conditions.

In Eq. (8), it is assumed that the robot moves in

a smooth state space with no boundary. However, a

real robot moves in spaces with boundaries like walls

or surfaces of obstacles. To solve this problem, we

consider the motion of the robot in an imaginary

space as shown in Fig. 8. This imaginary space is

obtained by smoothly connecting boundaries of two

spaces that have the same shape as the real space.

The mobile robot moves on the surface of this imagi-

nary space. The trajectory of the mobile robot in real

space is obtained by mapping from two sides in imag-
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Fig. 11: Poincar�e map of the simulation at x3 = �=4

inary space to the real side. Since the robot moves as

if it is re
ected by the boundary, we call this method

the \mirror mapping".

3 NUMERICAL ANALYSIS OF THE
BEHAVIOR OF ROBOT

We investigate by numerical analysis whether the

mobile robot with the proposed controller actually

behaves chaotic. Examples of trajectories of the robot

are obtained applying the mirror mapping, and shown

in Figs. 9 and 10. The parameters and the initial

states used are as follows:

coe�cients : v = 1 [m/s]; A = 0:5 [1/s]

B = 0:25 [1/s]; C = 0:25 [1/s]

initial states : x1 = 4; x2 = 3:5; x3 = 0

x = 5 [m]; y = 5 [m]

period : 8000 [s]

The trajectories generated by Eq. (8) scanned the

whole workspace regardless of the shape of workspace.

Figures 11(a) and (b)show the Poincar�e sections at

x3 = �=4 obtained from Figs. 9 and 10. The descrete

points are distributed over the whole workspace,

which indicates that the motion generated by the pro-

posed controller shows the topological transitivity in

the workspaces.

We calculated the Lyapunov exponents of the

robot. Three Lyapunov exponents on the trajectory

in 3-dimensional space (x; y; x3) projected from 5-

dimensional state space of Eq. (8), became as follows:

�1 = 1:2 � 10�2

�2 = �6:6 � 10�5

�3 = �6:9 � 10�4

The maximum exponent, �1, is positive and, there-

fore, the motion of robot possesses the sensitive de-

pendence on initial conditions.

From the numerical computations, we can conclude

that the motion of the robot due to the proposed

controller is chaotic.



Fig. 12: Prototype mobile robot

Fig. 13: Experimental environment

4 EXPERIMENT

We made experiments using a two-wheeled mobile

robot shown in Fig. 12 and setting up an experimental

environment (1.8m � 1.8m) shown in Fig. 13. The

robot has 6 proximity sensors at the front. The mirror

mapping is applied based on the information.

The chaotic mobile robot ran with the following

conditions:

linear velocity : v = 12 [cm/sec]

coe�cients : A = 0:27 [1/s]; B = 0:135 [1/s]

C = 0:135 [1/s]

initial states : x1 = 4; x2 = 3:5; x3 = 0

period : 2 hours

The result is shown in Fig. 14, which was obtained by

tracking the robot using a camera above the experi-

mental environment. The robot successfully scanned

the whole workspace.

5 DISCUSSION: CHAOS VS.
RANDOMNESS

Random walk is known as another method to scan

some workspace without the map. We need to discuss

the usefulness of the chaotic mobile robot as com-

pared with random walk. We also ran the robot for

2 hours by using random walk. Random walk was

implemented in such a way that the robot turns to-

ward random direction after moving straight for every
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Fig. 14: Resultant trajectory of the experiment

(chaotic robot)
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Fig. 15: Random walk

2 seconds (Fig. 15). The experimental environment

and the constant velocity of the robot were the same

as those of the previous experiment. The mirror map-

ping was also applied at boundaries.

Figure 16 shows the result. The density of resultant

trajectory of random walk is lower than that of the

chaotic robot, that is because the robot must spend

time to stop and turn after moving for 2 seconds. It

is one of advantages of the proposed controller that

the robot can move continuously with the constant

linear velocity.

Figures 17 and 18 are plots of the position of robot

after every 1 second during every 10 minutes. It can

be seen that the chaotic mobile robot in Fig. 17 could

scan the workspace more e�ciently. Figure 19 shows

the growth of the ratio of covered area by the robot

to the whole area. The chaotic mobile robot could

cover 90 percent of the whole area in one third of the

time taken by random walk to cover the same area.

There are many di�erent ways to integrate ran-

dom walk. Therefore, the above conclusion is not

in any sense general. However, there is a possibil-

ity that the chaotic scan is stochastically superior

to the scan by randomness. On the manifold inte-

gral calculus by the Monte Carlo method, Umeno[7]
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Fig. 16: Resultant trajectory of the experiment (ran-

dom walk)

made a comparison between the algorithm using an

exactly solvable chaos and the conventional algorithm

using random numbers, and showed superiority of the

chaos computing. He explained that long-term corre-

lation and non-Gaussian nature of chaos could play

important roles in this problem. Our problem of scan-

ning the whole connected workspace is considered as

a Monte Carlo computing to get the square measure

of the workspace. The chaotic mobile robot has a

chance being sperior to random walk, although the

Arnold equation in the proposed controller is not an

exactly solvable chaos. Our experiments with analy-

sis of Figs. 17 and 18 clearly showed that the chaotic

mobile robot is superior to an algorithm of random

walk in e�ciency of scanning the workspace.

6 CONCLUSION

In this paper, we have proposed the chaotic mobile

robot, which implies a mobile robot with a controller

that ensures chaotic motion. We designed the con-

troller such that the total dynamics of mobile robot

is represented by the Arnold equation. Experimen-

tal results illustrated the usefulness of the proposed

controller.

This research was conducted under "Robot Brain

Project" (PI: Y. Nakamura, Univ. of Tokyo) being

supported by the CREST Program of the Japan Sci-

ence and Technology Corporation.
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