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Abstract—This paper presents a computational technique for creating whole-body motions of human and animal characters without

reference motion. Our work enables animators to generate a natural motion by dragging a link to an arbitrary position with any number

of links pinned in the global frame, as well as other constraints such as desired joint angles and joint motion ranges. The method leads

to an intuitive pin-and-drag interface where the user can generate whole-body motions by simply switching on or off or strengthening or

weakening the constraints. This work is based on a new interactive inverse kinematics technique that allows more flexible attachment

of pins and various types of constraints. Editing or retargeting captured motion requires only a small modification to the original

method, although it can also create natural motions from scratch. We demonstrate the usefullness and advantage of our method with a

number of example motion clips.

Index Terms—Animation, online inverse kinematics computation, multiple constraints, motion editing, joint motion range.
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1 INTRODUCTION

CURRENT technologies of creating realistic motion of
human characters rely heavily on either an animator’s

skill or on motion capture techniques. Moreover, even if a
motion clip is created through hard work, it is difficult to
modify it for reuse in another scene or for a different
character. At the same time, there is an urgent need for
digital animationcontent for films, Internet, andgames.Thus,
handy and powerful tools for creating and editing whole-
body motions without special knowledge are essential.

For this purpose, we have developed an interface for

creating natural animation of human characters and

implemented it as the computational engine of a CG

animation software package. The interface is based on a

methodology which we call pin and drag, also known as

articulated figure positioning [1], [2]. Its basic function is to

enable the user to drag a link to an arbitrary position with

any number of links pinned in the global frame, as

illustrated in Fig. 1. Our results show that this tool is

capable of creating natural and human-like motions with

only a few pin-and-drag procedures, without any reference

motion, even when used by untrained people. The key to

this intuitive interface is the reduction of degrees of

freedom of a highly complex human character by way of

applying constraints on link positions, joint angle errors,

and joint motion ranges.
Our approach is also interesting from a biological point

of view. In synergetics [3], it has been revealed that many

natural systems are composed of a combination of a large

number of degrees of freedom and constraints. For

example, the human body is composed of many bones

and muscles. Its apparent degrees of freedom, however, are
far fewer than the number of elements included due to an
almost equivalent number of constraints. At the human
motion level, although the human body has hundreds of
degrees of freedom, its motion is constrained by various
factors such as internal coupling of joints, joint motion
ranges, contacts with the environments, and so forth. Our
methodology mathematically imposes constraints by pins
and extracts synergetic effects by drags. The reduced
degrees of freedom offer easy control and simultaneously
give the resulting motions a natural and human-like flavor.
This concept has already been applied to the learning and
control of robotic systems by forming synergies between
actuators [4].

Needless to say, motion capture is a powerful alternative
to our approach. Many motion libraries and tools for editing
and retargetting captured motions have been developed
and are commercially available. Much of the recent research
focuses on motion editing with existing motion clips instead
of creating new motion from scratch. Published results
include retargetting motion to another character [5], [6],
blending and connecting multiple motions while preserving
the kinematic constraints in the original motions [7], [8], and
modifying motion itself using kinematics [9] or dynamics
[10], [11], [12]. However, motion capture is not the final
solution because of the following two disadvantages: First,
users must capture or purchase new motion data every time
they need motion not included in their library. Second,
motions generated from a single library tend to be relatively
uniform. Users may want to change the motion slightly, not
only to fit the character or situation, but also to retouch it for
aesthetic reasons, which again requires skill and expensive
software.

Inverse kinematics is one of the most important
techniques for generating motions with kinematic con-
straints and has been studied in computer animation as well
as robotics. There are basically two categories in algorithms
for solving inverse kinematics: analytical and numerical.
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Analytical inverse kinematics [13], [14] use a closed-form
inverse of nonlinear direct kinematics functions. This
approach shows good performance in some class of
structures such as a single limb of human, but lacks
generality. Numerical algorithms vary in the methods they
employ to optimize the evaluation functions commonly of
the ideal and actual positions of the fixed point. They are
usually applicable to general articulated bodies. It is also
relatively easy to include other constraints. The techniques
in [5], [8] use the whole sequence of motion to perform
global optimization, which is not suitable for online motion
generation. On the other hand, Choi and Koy [6] employed
the closed-loop inverse rate control to enable online
modification of captured motion. Lee and Shin [9] proposed
a hybrid analytical and numerical algorithm to take the
advantage of both approaches.

This paper describes the computational details of our
pin-and-drag interface for creating natural motions of
human and animal characters without using any captured
motion. By applying appropriate fixed pins, the user can
create whole-body motion in real time with a single pick-
and-drag procedure. Users can also specify other con-
straints such as desired joint values and joint motion ranges,
which are useful for creating cyclic and human-like
motions. This method is naturally extended to editing and
retargetting existing motions by allowing moving pins and
time-dependent desired joint values.

The rest of this paper is organized as follows: We first
present an overview of the computation and some pre-
liminaries in Section 2 and then describe the computational
details in Section 3. Section 4 discusses how to apply the
method to editing motions in real time, followed by some
examples of generated motions in Section 5. Finally, we
summarize the contributions of this paper in Section 6.

2 OVERVIEW

2.1 Pin-and-Drag Interface

The task of the computational engine for the pin-and-drag
interface is to generate a motion in which:

1. The link specified by the user (the dragged link)
follows the indicated path,

2. Any number of links specified by the user (pinned
links) stay at their reference positions,

3. Each joint angle stays in its motion range, and
4. Each joint angle stays as close as possible to the

given reference angle.

There are two obvious difficulties in computing the
solution that satisfies all of these constraints:

. It is difficult (or virtually impossible) to derive an
analytical method that can handle the general
cases and

. The constraints often conflict with each other
(consider the case where the user drags a link
beyond the reachable space determined by the
pinned links).

The first problem comes from the fact that the constraints
are expressed by a set of complicated nonlinear equations,
and the second implies that these equations may not have
an exact solution.

The first problem is solved by introducing differential
kinematics that give a linear relationship between the
constraints and the joint velocities. In order to deal with
the second problem, we divide the four constraints into two
priority levels [15]. The first constraint (the dragged link) is
given the higher priority and is always satisfied exactly. The
other constraints are given the lower priority. To satisfy the
constraints with the lower priority, the null-space of the first
constraint is used. If there is a conflict among the
constraints, the least-square optimization is applied to find
the best approximation for the lower-priority constraints.

Although the null-space decomposition and the least-
square solution are commonly done with a pseudoinverse,
it may result in extremely large and, therefore, physically
infeasible solutions in the neighborhood of singularity. The
singularity-robust (SR) inverse [16] is adopted to avoid this
problem since multiple constraints and conflicts among
them are the issue to be dealt with in this paper and,
therefore, we necessarily face singularities.

The SR inverse eases the singularity problem by allowing
errors near singular points. We introduce the feedback
controller as a device for the recovery of errors which the
singularities or conflicts introduce. By integrating the
SR inverse and the feedback controller into the differential
kinematics of constrained kinematic chains, the pin-and-
drag interface is equipped with the “elastic” property, the
natural response, and increases reliability.

2.2 Differential Kinematics with Redundancy

The Jacobian matrix of the position of a link with respect to
the joint angles is defined as:

JJi ¼4
@rri
@��

; ð1Þ

where rri is the position of link i, �� is the vector composed of
all joint angles, and JJi is the Jacobian matrix of rri with
respect to ��. An efficient method for computing the Jacobian
matrix can be found in [17]. The velocity of link i and joint
angles are related by

_rrrri ¼ JJi
_����: ð2Þ
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Fig. 1. The concept of pin-and-drag interface.



Note that, if the base link is not fixed to the inertial frame, as
is often the case with human figures, its linear and angular
velocities are also included in _����. If JJi is square and
nonsingular, it can be inverted to yield

_���� ¼ JJ�1
i _rrrri; ð3Þ

by which we can control the joints based on the reference
trajectory of rri.

Unfortunately, JJi is not square in our problem since
human and animal characters typically have over 30 degrees
of freedom (DOF). The general solution of (2) is described
using the pseudoinverse JJ]

i as

_���� ¼ JJ]
i _rrrri þ ðII � JJ]

iJJiÞyy; ð4Þ

where II is the identity matrix and yy is an arbitrary vector.
The second term shows the redundancy and reserves the
degrees of freedom that we can use for the other constraints
[15]. One may use the second term of (4) to find the optimal
solution that accomplishes other tasks without breaking (2).

2.3 The Singularity-Robust Inverse

Singularity-robust (SR) inverse [16] is also known as
damped pseudoinverse [18]. Consider a linear equation

AAxx ¼ bb: ð5Þ

If the coefficient matrix AA is not square, we usually use its
pseudoinverse AA] to compute the least-square solution with
the minimal norm. However, the pseudoinverse solution
tends to have extremely large amplitude in the neighbor-
hood of singular points. This is because the pseudoinverse
minimizes the norm of the error jbb�AAxxj first and then
minimizes the norm of the solution jxxj [16]. The SR inverse,
on the other hand, avoids this problem by minimizing the
sum of the norms of the error and the solution.

For an m-by-n (m < n) matrix AA, its pseudoinverse is
computed by

AA] ¼ AAT ðAAAAT Þ�1: ð6Þ

AA] may have extremely large elements when AAAAT is nearly
singular. The SR inverse, on the other hand, uses the
following equation instead of (6):

AA� ¼ AAT ðAAAAT þ kIIÞ�1; ð7Þ

where AA� is the SR inverse of AA, II is the identity matrix, and
k is the parameter that determines the weighting between
the norm of the solution and the error. If we use small k,
then the error gets small, but the solution might get large
around singular points and vice versa [19].

2.4 The Algorithm

The algorithm to be proposed in this paper consists of the
following five steps:

1. Compute the general solutions of joint velocities that
move the dragged link toward the indicated position
(Section 3.1),

2. Compute the desired velocities of the other con-
straint variables, taking account of their reference
and current values (Section 3.4),

3. Compute the Jacobian matrix of the constraint vari-
ables with respect to the joint angles (Section 3.3),

4. Using the general solutions in Step 1, find a
particular solution that closely satisfies the desired
velocities of the constraint variables (Section 3.2),

5. Numerically integrate the joint velocities to get the
joint angles.

The proposed algorithm has a number of advantages
over the previous ones with similar objectives:

. Moving a single link determines the posture of the
whole body,

. Any link can be dragged or pinned,

. No limit on the number of pinned links,

. Constraint variables can be instantly included or
removed,

. Relative importance of the constraint variables can
be tuned.

2.5 Comparison with Previous Work

The main objective of this paper is to develop an interface
that enables people to generate whole-body motions of
articulated figures with little effort and preferably without
captured data. Although there are many related works in
this field, most of these efforts aim to solve the problem of
editing or retargeting prerecorded data. The authors would
think it is because the previous researchers viewed
generating new motions as too challenging.

Inverse kinematics is the key in our approach. Many
previous works in inverse kinematics used global optimiza-
tion over the spacetime constraint of motion [5], [7], [8], [9].
The SR-inverse was also employed in [5] to avoid singula-
rities in the Jacobian matrix.

Online computation using local optimization, on the
other hand, was investigated by Choi and Ko [6] based on
the feedback control and the null-space method similar to
ours. In [6], the pinned links are placed only at the end-links
due to the fact that the increase of constraints makes the
Jacobian matrix ill-conditioned and the troubles of singu-
larity cannot be avoided by the use of pseudoinverses. Our
approach allows as many pins as we need, even at
intermediate links or two neighboring links, thanks to the
SR-inverse.

Badler et al. [1] and Phillips et al. [2] also developed a
pin-and-drag interface and implemented it as a part of the
3D animation system Jack [20]. Our formulation follows the
previous works in principle and includes the following
improvements:

. In Badler et al.’s system, the link hierarchy was
recomputed so that the dragged link becomes the
root, while, in ours, the link hierarchy does not
change once the structure is given, thanks to the
virtual link representation of closed loops proposed
in [21]. We can eliminate the overhead to switch the
dragged links, providing more responsive and
comfortable interface to the user.

. Badler et al.’s system considered joint motion range
of rotational (or 1DOF) joints and it would find it
difficult to include spherical-joint limits with their
projection scheme.
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. The normal pseudoinverse was used in their compu-
tation of inverse kinematics. The SR-inverseweuse, in
contrast, allows us to apply asmany constraints as we
need, without worrying about the singularity.

The strict comparison between the proposed and the
previous methods is not straightforward. One difference in
computational expense comes from the elimination of link-
hierarchy recomputation. Another difference is due to the
SR-inverse as opposed to the pseudoinverse in the previous
works. In [16], the computational comparison was exten-
sively made between the pseudoinverse and the SR-inverse
and the difference was negligibly small for full-rank
matrices. For non-full-rank matrices, the SR-inverse is
known to be significantly more efficient than the pseudoin-
verse. These algorithmic differences show the computa-
tional advantage of the proposed method in this paper.

Representation of the motion range of 3DOF spherical
joints is fundamental to obtaining natural behaviors of
human characters. A simple inequality representation of the
Euler angles is inappropriate due to their nonlinearity [22],
[23]. A precise anatomical modeling was recently proposed
[23], where three 3DOF spherical joints and a 5DOF joint
were used for modeling. It is common in these previous
works that the 3DOF of a spherical joint are parameterized
by three variables known as the Euler angles and, therefore,
suffers from the well-known algorithmic singularity.

In contrast, we propose parameterizing the 3DOF of a
spherical joint in auniquedefinitionof three variables. It has a
singular point only at a physically insignificant direction. In
addition, when the limb configuration goes beyond the
motion range, a feedback control is applied to force the range.
The feedback control is proposed in a simpler form in this
paper than those used in the previous works.

The above-mentioned improvements characterize our
algorithm by computationally high efficiency and robust-
ness compared to the previous works.

3 COMPUTATIONAL DETAILS

3.1 The Dragged Link

First, we compute _���� with which the dragged link exactly
follows its reference velocity _rrrrrefP and position rrrefP . Let rrP
denote the current position of the dragged link. Its desired
velocity is computed by

_rrrrdP ¼ _rrrrrefP þKKP ðrrrefP � rrP Þ; ð8Þ

where KKP is a positive-definite gain matrix. The relation-
ship between _���� and _rrrrP is given by

_rrrrP ¼ JJP
_����; ð9Þ

where JJP is the Jacobian matrix of rrP with respect to the
joint angles. The general solution _���� for the desired velocity
_rrrrdP is computed by

_���� ¼ JJ]
P _rrrr

d
P þ ðII � JJ]

PJJP Þyy: ð10Þ

The feedback control is applied only to compensate the
numerical errors. A weighted pseudoinverse [19] may be
used in the above equation instead of the normal
pseudoinverse to characterize the joint motions.

3.2 Lower-Priority Constraints

The general solution of (10) is rewritten by

_���� ¼ _����0 þWWyy; ð11Þ

where WW ¼4 II � JJ]
PJJP and _����0 ¼

4
JJ] _rrrrdP .

Suppose we have NF pinned links whose positions are
denoted by rrFiði ¼ 1 . . .NF Þ, ND joints with their reference
angles ��D, and NL joints with their joint values ��L out of the
motion ranges. Note that NL may vary anytime during the
motion, whereasND stays constant until it is changed by the
higher level of control. Using the vectors, we define ppaux as
follows:

ppaux ¼4 rrTF1 . . . rrTFNF
��TD ��TL

� �T

: ð12Þ

Velocity _ppppaux is related to the joint velocity _���� by a
relationship similar to (2).

_ppppaux ¼ JJaux
_����: ð13Þ

Computation of JJaux is to be discussed in the following
section.

The arbitrary vector yy is computed as follows: We first
compute the desired velocity _ppppdaux of ppaux to take account of
the errors between the constraint conditions and their
current values as described in Section 3.4. Substituting (11)
into (13) yields

_ppppaux ¼ _pppp0aux þ JJauxWWyy; ð14Þ

where _pppp0aux ¼4 JJaux
_��0��0. Using SS ¼4 JJauxWW and

�_ppppaux ¼4 _ppppdaux � _pppp0aux;

we have a simpler form of the equation:

SSyy ¼ �_ppppaux: ð15Þ

Since SS is not always well conditioned, we use the
SR inverse to solve this problem. Denoting the SR inverse
of SS by SS�, yy is computed by

yy ¼ SS��_ppppaux: ð16Þ

The joint velocity _���� is obtained by substituting (16) into (11),
which is then integrated to yield the joint angle �� for
animation.

3.3 Computation of JJaux

Let JJFiði ¼ 1 . . . NFÞ be the Jacobian matrix of rrFi with
respect to the joint angles. Then, for all pinned links, we
have

_rrrrFi ¼ JJFi
_����: ð17Þ

For the joints with reference angles, the relationship
between their velocities _����D and _���� is described by

_����D ¼ JJD
_����; ð18Þ

where JJD is the matrix whose ði; jÞth element is 1 if the
ith element of ��D corresponds to the jth element of �� and 0
otherwise.

Similarly, we can describe the relationship between _����
and the velocity of ��L as follows:
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_����L ¼ JJL
_����; ð19Þ

where JJL is the matrix whose ði; jÞth element is 1 if the

ith element of ��L corresponds to the jth element of �� and 0

otherwise.
Combining the above-defined matrices, JJaux is formed as

follows:

JJaux ¼ JJT
F1 . . . JJT

FNF
JJT
D JJT

L

� �T

: ð20Þ

The computation of columns of JJFi, JJP , and JJL

corresponding to spherical joints is to be discussed in

Section 3.5.

3.4 Computation of _ppppdaux
The desired velocity of each pinned link _rrrrdFi is computed by

the following feedback law:

_rrrrdFi ¼ KKFiðrrrefFi � rrFiÞ; ð21Þ

where rrrefFi is the reference position and KKFi is a positive-

definite gain matrix.
The desired velocity of joints with their reference angles,

_����dD, is computed by

_����dD ¼ KKDð��refD � ��DÞ; ð22Þ

where ��refD represents the reference joint angles and KKD is a

positive-definite gain matrix.
The desired velocities of joints that exceed their motion

ranges are computed as follows:

_��dLi ¼
KLið�max

Li � �LiÞ if ð�Li > �max
Li Þ

KLið�min
Li � �LiÞ if ð�Li < �min

Li Þ;

�
ð23Þ

where �max
Li and �min

Li are the maximum and minimum joint

angles, respectively, and KLi is a positive scalar gain.
Equations (22) and (23) work for 1DOF joints. The

following subsection extends the ideas to 3DOF spherical

joints.

3.5 Handling Spherical Joints

3.5.1 Reference Joint Displacements

The joint displacement and the joint velocity of a spherical

joint are represented by the 3� 3 orientation matrix RRi and

its associated angular velocity !!i, respectively, described in

its parent link frame [21].
When a spherical joint is given a reference joint

displacement RRDi 2 RR3�3, we compute its desired joint

velocity as follows: We first compute the error vector eei
between the current joint displacement RRi and RRDi by

eei ¼
1

2

�RRið1; 2Þ ��RRið2; 3Þ
�RRið1; 3Þ ��RRið3; 1Þ
�RRið2; 1Þ ��RRið3; 2Þ

0
@

1
A ð24Þ

�RRi ¼4 RRDiRR
T
i ; ð25Þ

where�RRiðm;nÞ denotes the ðm;nÞth element of�RRi. Then,

the desired angular velocity !!d
Di is computed by [24]

!!d
Di ¼ �KKDieei; ð26Þ

where KKDi is a positive-definite gain matrix. Equations
(24)-(26) are used for spherical joints in place of (22).

Also included in JJFi, JJD, and JJL corresponding to a
spherical joint are three columns associated with the
angular velocity. Each column is computed just as if there
is a rotational joint around the x, y, or z axis.

3.5.2 Joint Motion Range

The motion range of a spherical joint is expressed as a
region in a three-dimensional space. Simplicity of the
geometric representation of the region is important for
real-time computation. The region would show a complex
shape if we represent it with common coordinates such as
the Euler angle due to their nonlinearity. In this subsection,
we propose an intuitive representation of spherical joint
motion range. Although one may see a similarity to the
equivalent angle-axis representation [14], it is different in the
sense that our representation consists of two sequential
rotations. The representation provides three parameters,
two of which describe the link direction and the other
denotes the twist angle, as illustrated in Fig. 2.

WhenRRi is the identity, the link is at the nominal direction
and we represent it by unit vector dd0i . The current link
direction ddi is obtained by rotating dd0i about vector aai that lies
in the two-dimensional plane orthogonal to dd0i . The magni-
tude of aai is not 1, but sinð�i=2Þ, where �i represents the angle
of rotation, as seen in Fig. 3. The twist angle� is defined as the
angle bywhich the link frame after the first rotation around aai
is rotated to make the current link frame RRi. The entire
configuration of a spherical joint is therefore included in a
cylinder whose axis is dd0i , radius 1, and height 2�.

In our implementation,dd0i is set as ð1 0 0ÞT for all joints and,
therefore, aai stays in the yz plane, namely, aai ¼ ð0 ay azÞT .
Thus, themotion range is described by a cylinderwith an axis
parallel to the � axis as shown in Fig. 4.

ay, az, and � are computed as follows: Since dd0i ¼ ð1 0 0ÞT ,
we have

ddi ¼ RRidd
0
i

¼ ðRRið1; 1Þ RRið2; 1Þ RRið3; 1ÞÞT :
ð27Þ

Therefore, ay and az are computed by

ay ¼ � RRið3; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þRRið1; 1ÞÞ

p ð28Þ

az ¼
RRið2; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þRRið1; 1ÞÞ
p : ð29Þ
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Then, � is computed by comparing the y and z axes of the
frame after the rotation around aai and the actual current
frame since their x axes coincide with each other. Although
(28) and (29) show singularity at �i ¼ ��, it is not a practical
problem since these values are usually beyond joint limits.

Our next step is to determine whether the computed
parameters are inside or outside of the motion range. For
ease of computation, we describe the link direction range by
a collection of triangle patches in the ay-az plane. The whole
motion range is represented by a collection of triangular
cylinders with the triangle patches as their footprints and �
axis as their axes.

We first look for the triangle in which ðay; az; 0Þ is
included. If no triangle is found, the joint is out of the joint
motion range. Otherwise, we then proceed to check if
ðay; az; �Þ is between the upper and lower limits of the
triangle.

If the parameters ðay; az; �Þ are out of the range, we
compute the desired velocity to bring the joint back into the
range and include it in _ppppdaux. For this purpose, we define the
standard orientation RRSi for each joint, and compute the
desired joint velocity !!Li to move the joint toward RRSi. This
is achieved by simply substituting RRSi into RRDi in (25) and
!!Li into !!Di in (26). The more theoretical alternative would
be to control the joint toward the configuration on the
boundary of the motion range, as in [23]. We did not take
this for computational simplicity’s sake.

Fig. 5 shows the motion range of a right shoulder. The
light colored (or red for readers with colored figures) shows

the upper surfaces of triangular cylinders, while the dark
colored (or blue) shows their lower surfaces. The vertical

axis denotes the twist angle in degree, while the other two
denote the rotation angle in forward/backward and left/

right directions as indicated in the figure. This example
includes 35 triangles in the ay-az plane. We modeled the

motion ranges of 10 spherical joints with 8 to 35 triangles,
depending on their shapes. Due to the simplicity of

computation, handling spherical joints did not affect the

real-time performance of the system.

4 EDITING MOTION IN MOTION

In Section 3, we discussed the algorithm for static pin-and-

drag interface, where the reference positions of pins, rrrefFi ,
and the reference joint angles, ��refDi , were assumed constant,

while the dragged link had its velocity _rrrrrefP . Extending the
algorithm to include velocities of rrrefFi and ��refDi for dynamic

pin-and-drag interface is straightforward. By this extension,
we can apply the algorithms to editing motion in motion

and retargeting captured data. Changing the pins and the
dragged link one after another in motion enables us to

generate step by step rich and complex motions of
characters.

The following two slight modifications are required to
extend the above method to editing motion in motion:

. The positions of the pins are obtained by direct
kinematics computation for each frame of the
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Fig. 4. Motion range of a spherical joint projected onto ðay; az; �Þ space.
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reference motion. Since each pin has reference
velocity _rrrrrefFi , the following equation is used instead
of (21):

_rrrrdFi ¼ _rrrrrefFi þKKFiðrrrefFi � rrFiÞ: ð30Þ

. The reference joint displacements are set as those of
the reference motion. Using the reference joint
velocities _����refD , the following equation is used instead
of (22):

_����dD ¼ _����refD þKKDð��refD � ��DÞ: ð31Þ

5 EXAMPLES

The proposed method was implemented as the computa-

tional engine of CG animation software Animanium2,

where the method is used for generating key frames and

recording real-time manipulation of human figures. The

software is equipped with graphical interfaces to select

pinned and dragged links, define weight, feedback gain,

and motion range for each joint. The motion of the mouse is

mapped into the three-dimensional motion of the dragged

link. The users can create appealing animations by simply

specifying key frames using the interface, which are then

interpolated automatically to generate the animation. The

computation time is approximately 33ms on PentiumIII

1GHz processor, for a 48DOF human figure with 1 dragged

link, 5 pins, and 20 joints with reference joint displacements

and joint motion ranges.

5.1 Pin and Drag

Fig. 6 shows various postures generated by a single pin-

and-drag procedure from the initial posture (a), with both

hands and feet pinned.

5.2 Effect of Joint Motion Range

The effect of considering joint motion range is shown in

Fig. 7, where the feet are pinned and the head is dragged

from the original posture (a) to the final (d). As the user

interface for changing joint motion range, the motion ranges

of spherical joints are shown by cones representing the link

direction ranges in the figure. Although the neck joint

exceeds its range in posture (b), which is represented by a

358 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 3, JULY-SEPTEMBER 2003

Fig. 6. Postures generated by a single pin-and-drag: (a) original posture,

(b) pelvis dragged, (c) head dragged, (d) left shoulder dragged.

Fig. 7. Effect of applying joint motion range: (a) original posture, where

the motion ranges are represented by cones, (b) the neck joint exceeds

its range, (c) neck joint returns back into the range, (d) the upper body is

bended further without exceeding the ranges.



red cone, it returns back to the range by bending back the

chest joint in (c). All joints stay in the range in the final

posture (d). Note that this natural-looking behavior is

generated in real time by a single pin-and-drag procedure

taking account of joint motion ranges.

5.3 Real-Time Motion Generation

The images in Fig. 8 are taken from a video clip recorded
also in real time when the user dragged the right hand of
the character for 4 seconds. The pins were set at five links—
the toes, heels, and the left hand, shown in blue. Note that
we can set a pin at link not necessarily at the end of a chain,
such as heel links. A single dragging created a realistic
motion like picking up an object on the floor.

5.4 Editing Motion in Motion

Figs. 9 and 10 show results of editing prerecorded motion.
The motion in Fig. 9 was created by a professional animator
using the software and the modification was done by one of

the authors. The original motion was a short walk

consisting of six keyframes. Since both feet were pinned

by moving pins that move along the trajectory determined

by the original walking motion, their positions do not

change even when we drag other links in the body. We

modified the second and third frames by simply dragging

the head and left hand so that the motion looks like

avoiding an object flying toward the character.

6 CONCLUSION

The contributions of this paper are summarized as follows:

1. We developed computational algorithms for the
singularity-robust pin-and-drag interface to com-
pute natural-looking motions of human character.

2. In contrast to the other numerical inverse kinematics
solvers, we can place any number of pins to arbitrary
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Fig. 8. An example of real-time motion generation.

Fig. 9. Original motion used for motion editing in motion.

Fig. 10. Modified motion from the motion in Fig. 9.



links without causing troubles due to the singularity
of the Jacobian matrices.

3. Implemented constraints include pins, desired joint
angles, and joint motion ranges. All these constraints
are handled in a uniform way.

4. Editing motion in motion and retargeting captured
motions are also realized by applying the proposed
method with reference motion data.

5. The computational algorithms were successfully
implemented and demonstrated their computational
efficiency and ease of use for generating keyframe
and real-time animation. Examples of created mo-
tions demonstrated the usefulness of the developed
algorithms and software.
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