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Dynamics Computation of Structure-Varying
Kinematic Chains and Its Application to

Human Figures
Yoshihiko Nakamura, Member, IEEE,and Katsu Yamane

Abstract—This paper discusses the dynamics computation of
structure-varying kinematic chains which imply mechanical link
systems whose structure may change from open kinematic chain
to closed one and vice versa. The proposed algorithm can handle
and compute the dynamics and motions of any rigid link systems
in a seamless manner without switching among algorithms. The
computation is developed on the foundation of the dynamics com-
putation algorithms established in robotics, which is superior in
efficiency due to explicit use of the generalized coordinates to those
used in the general-purpose motion analysis softwares. Although
the structure-varying kinematic chains are commonly found in
computing human and animal motions, the computation of their
dynamics has not been discussed in literature. The developed
computation will provide a general algorithm for the computation
of motion and control of humanoid robots and computer graphics
human figures.

Index Terms—Closed kinematic chains, dynamics computation,
human figures, humanoid, structure-varying systems.

I. INTRODUCTION

T HE ADVANCE of humanoid robot research necessitates
efficient computational schemes for simulating, control-

ling, and generating its motion. In computer graphics (CG),
strongly demanded are the tools that can automatically create
CG animations with dynamic motions of human and/or animal
characters. The key issue concerning these two cases is how
to generate various motions consideringphysical consistency,
the condition that the motion is physically feasible. In fact, con-
trolling a humanoid robot on the basis of physically consistent
motion would contribute to the realization of fast, natural, and
stable motions. In CG, physical consistency will lead to cost and
time efficiency for generating natural human motions.

The objective of this paper is to establish the foundation for
dynamics computation of human figures, namely, the computer
models for real human motions. The developed methods will
provide the basis for generating physically consistent motions.
Compared to conventional robot manipulators for which most
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Fig. 1. Structure-varying kinematic chain.

dynamics computation algorithms are designed, the motions of
human figures have the following two major properties.

1) The link connectivity may change during the motion from
an open kinematic chain to a closed one and vice versa,
by catching or releasing an object with the hands as il-
lustrated in Fig. 1. Such systems are said to bestruc-
ture-varyingin this paper.

2) The kinematic chain usually has many degrees of
freedom, sometimes including complicated closed kine-
matic chains. In fact, simply holding a bar with the both
hands can generate a closed kinematic chain.

Thus, the dynamics computation algorithm for human figures is
desired to: 1) readily handle structural changes and 2) efficiently
compute the dynamics of closed kinematic chains with many
degrees of freedom.

Dynamics computation of closed kinematic chains [1]–[4]
and legged mechanisms[5], [6] has been discussed for many
years. The dynamics computation algorithms currently used in
general-purpose motion analysis softwares [2] can handle any
mechanisms and simulate their motions. However, they tend to
require enormous amount of computation because of the large
number of coordinates they use. In robotics, the dynamics com-
putation algorithms have been developed taking account of their
efficiency and adopting the minimal number of coordinates. The
algorithms were extended from open kinematic chains to closed
ones, where the closed chain is transformed into equivalent tree
structure by virtually cutting some joints in closed loops. Most
of them use the Lagrange multipliers to compute the constraint
force and moment at the cut joints [3]. An alternative approach
was proposed by Nakamura and Ghodoussi [4], where the Ja-
cobian matrix of unactuated joints with respect to actuated ones
is used instead of the Lagrange multipliers. This approach uses
the minimal number of coordinates and is computationally ef-
ficient. However, the computation of the Jacobian matrix was
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shown only for simple closed kinematic chains such as parallel
five-bar-link structures. Therefore, the systematic computation
of the Jacobian matrix of unactuated joints with respect to ac-
tuated ones for the general closed kinematic chains remains an
open research issue.

The difficulty of handling structure-varying systems may
depend on how the link connectivity of the mechanism is
described. However, the method of describing link connectivity
has seldom been discussed from that point of view. Previous
researches represented the relation of links via linear graphs [7],
matrices [8], or vectors [9]. From a practical or programming
point of view, however, they are not always effective because
the program has to search among elements to find out whether
there exists a closed loop or even which link is connected to
one.

In this paper, we first introduce the generalized coordinates
of a closed kinematic chain, which are defined as the inde-
pendent variables that represent the mobility of the kinematic
chain. As for a designed manipulator, we know in advance its
degrees of freedom and the variables that represent the motion.
For closed kinematic chains found in motions of human figures,
on the other hand, since we cannot predict their structures, the
generalized coordinates or the degrees of freedom are not de-
fined or computed in advance. We develop a general algorithm
that systematically selects the generalized coordinates and com-
putes the degrees of freedom of the system. The developed algo-
rithm is used with the previously proposed efficient algorithm
of Nakamuraet al. [4] and applied to compute the inverse and
forward dynamics of general closed kinematic chains.

Second, the method of describing link connectivity is pre-
sented.Pointers, a function of C/C programming language,
are applied to describe open kinematic chains. In order to
describe closed chains,virtual links are also introduced. The
method is suitable for implementing the dynamics computation
algorithm proposed in this paper. Khalilet al. [10] proposed a
notation for closed kinematic chains and used a similar concept,
but they focused on the notation of geometry of links and did
not explicitly use an additional link for a closed loop.

Handling structural change is then discussed. Our description
with pointers and virtual links are shown to be powerful in han-
dling structural changes. We also establish the computation of
the velocity boundary condition after structural change with col-
lision due to nonzero relative velocities.

Finally, two examples of dynamics simulation of human fig-
ures with structural changes are presented and followed by the
conclusions.

II. DYNAMICS COMPUTATION OF GENERAL CLOSED

KINEMATIC CHAINS

A. Generalized Coordinates of Closed Kinematic Chains

Consider a closed kinematic chain in Fig. 2. Let be the
total number of joints in the chain, the whole joint
angles, the number of actuated joints, the ac-
tuated joints, and the actuator torques. In this sec-
tion, we assume that the mechanism has rotational or transla-
tional joints of single-degree-of-freedom for simplicity sake. In-
troducing multi-degree-of-freedom joints requires no essential

Fig. 2. Closed kinematic chain.

Fig. 3. Tree-structure open kinematic chain.

modification to the algorithm, as to be discussed later in Sec-
tion VI.

Suppose that the closed chain is virtually cut at some joints
and forms a tree-structure open kinematic chain in Fig. 3. Let

be the number of joints in the tree-structure chain,
the joint angles, and the joint torques. We as-

sume at this moment that all joints in the tree structure, including
those unactuated in the original closed chain, are actuated.

Suppose that the tree structure makes the same motion as the
original closed chain without force or moment interaction at the
virtually cut joints. The joint torques required to generate the
motion is computed by recursive inverse dynamics algorithms
for open kinematic chains [11]–[13]. Note that nonzero values
may be obtained for the elements of corresponding to the
unactuated joints in the original closed kinematic chain.

Let the original closed kinematic chain have degrees of
freedom, is the generalized coordinates that describe
the mobility of the closed kinematic chain, and the general-
ized force. We can form by selecting appropriate joints
from , for instance. Since the generalized coordinates deter-
mine the motion of the whole mechanism, and can be
written as follows:

(1)

(2)

From (1), the d’Alembert’s principle, and the principle of vir-
tual work, the joint torques of the tree structure and the gen-
eralized forces satisfy the following equation [4]:

(3)

where

(4)
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and are the virtual displacements of and , re-
spectively. Similarly, (2) and the principle of virtual work yield

(5)

where

(6)

is the virtual displacement of . Since (3) and (5) hold for
any , we have the following equations:

(7)

(8)

We can compute the actuator torque from those of the tree
structure through the generalized force once the sensi-
tivity matrices and are computed, which is the subject of
Section II-B.

Nakamuraet al. [4] did not use the generalized coordinates
explicitly assuming that is taken as a subspace of . As
explained above, introducing the generalized coordinates elim-
inates unnecessary assumptions and restrictions on virtual cut
joints and on the placement of actuated joints.

B. Computation of and

For many practical planar closed kinematic chains,and
become constant and can be formed from visual inspection. It
is also known that they are computed relatively easily for some
special closed kinematic chains, such as parallel mechanisms.
In this section we provide a general method for computing the
two matrices.

Consider a loop illustrated in Fig. 4. The linear and angular
velocities of the shadowed link is computed from as well
as by multiplying the Jacobian matrices and of the
position and orientation of link with respect to and ,
respectively. The closed loop imposes the constraint that the ve-
locity of link computed from should be equal to that from

, namely

(9)

Extending the discussion to the whole mechanism, the con-
straint due to theth closed loop is written in the form

(10)

where is a matrix. The columns of consist
of those of the Jacobian matrices of linkwith respect to the
joint angles, which can be calculated in the same way as serial
kinematic chains [14].

Let be the number of independent closed loop in
the structure. Then, we get constraint matrices

, which forms the matrix as

...
(11)

Fig. 4. Closed loop.

Although represents all the kinematic constraints in the
mechanism, not all the rows in are independent, that is,
is not always full rank. We extract linearly independent rows
from and form where is the rank of .
From (10), satisfies

(12)

Equation (12) represents the independent constraints of the
closed loops. Since we have joints under constraints, the
remaining degrees of freedom (mobility) of the whole mecha-
nism becomes

(13)

Now, we form by extracting independent columns from
and by gathering the remaining columns. Also divide

into and according to the division of . From (12),
, , , and satisfy the equation

(14)

Equivalently

(15)

Since is always invertible, is uniquely determined by

(16)

(17)

Equation (16) implies that we can choose as the general-
ized coordinates. It is worth pointing out that the generalized
coordinates are automatically selected through the process of
forming . Note that , the independent columns of ,
corresponds to thedependentjoint angles , not to theinde-
pendentones .

The Jacobian matrices and are formed from imme-
diately as follows.

• : if the th joint of is not a member of the generalized
coordinates and corresponds with theth one of , then
include the th row of as the th row of . If it is a
member of the generalized coordinates and corresponds
with the th joint of , then include a unit vector with
th element being 1 and others 0 as theth row of . This

procedure is shown in Fig. 5.
• : if the th joint of is not a member of the generalized

coordinates and corresponds with theth one of , then
include the th row of as the th row of . If it is a
member of the generalized coordinates and corresponds
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Fig. 5. FormingWWW fromHHH .

Fig. 6. FormingSSS fromHHH .

with the th joint of , then include a unit vector with
th element being 1 and others 0 as theth row of . This

procedure is shown in Fig. 6.

C. Relationship of Accelerations

Differentiating (16) by time yields

(18)

which calculates the acceleration of dependent jointsfrom
the generalized acceleration . This computation is required
in forward dynamics computation. In this section, computation
of the second term of the right-hand side of (18) is presented.

From (17), we have

(19)

On the other hand, , where represents the inden-
tity matrix, yields

(20)

Using (15) and (20), (19) becomes

(21)

is formed by extracting the elements of corre-
sponding to , where is computed in the same algo-
rithm as one for serial manipulators [13].

III. I NVERSE ANDFORWARD DYNAMICS OF GENERAL CLOSED

KINEMATIC CHAINS

A. Inverse Dynamics

The inverse dynamics computation of general closed kine-
matic chains consists of the following four steps.

1) Compute and .
2) Compute by inverse dynamics computation for the

tree structure.
3) Compute by (7).
4) Compute by solving the linear equation (8).

If the mechanism does not have actuation redundancy, namely,
if the number of actuators equals to the degrees of freedom,
becomes a square matrix. Thus, is computed by

(22)

Otherwise, is not determined uniquely, and some optimiza-
tion method should be applied. Refer to [15] for methods of op-
timizing actuation redundancy.

B. Forward Dynamics

Although several forward dynamics algorithms are known for
open kinematic chains [2], [8], [9], [11], it is difficult to apply
them to closed chains due to the complexity of their structure.
The unit vector approach [11], however, can be extended to
closed chains easily.

The equation of motion of closed kinematic chains is written
in the same form as open chains as

(23)

where is the generalized force,
is the inertia matrix, and includes the sum of cen-
trifugal, Colliolis, and gravitational forces. In open kinematic
chains, the joint angles are usually used as the generalized co-
ordinate, and thus the joint torques are the generalized force.
Therefore, the accelerations of all joints are computed directly
by (23). In closed kinematic chains, on the other hand, the joint
torque vector and the generalized force may differ even in their
dimensions. Additional computations of transformation of the
joint torques into the generalized force and the generalized ac-
celeration into the joint acceleration are required.

The forward dynamics algorithm based on the inverse dy-
namics algorithm explained in Section II-A and the unit vector
approach is summarized as follows.

1) Transform the input joint torques into the generalized
force by (8).

2) Compute the inverse dynamics for the zero generalized
acceleration and let the resultant generalized force be.
Using (18), the accelerations of the dependent joints
are given by , whose computation method is shown
in Section II-C.

3) Execute the following computation for .

a) Compute the inverse dynamics with , where
is a unit vector whoseth element is 1

and others 0. The accelerations of the dependent
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Fig. 7. Three pointers to describe open kinematic chains.

joints are computed by substituting for in
(18).

b) Let the computed generalized force beand cal-
culate by . We can obtain directly
by computing the inverse dynamics with

, and no gravity, which would save the
computational cost a little.

c) Include as the th column of .

4) Using and compute the generalized acceleration
by

(24)

5) Compute by (18), where is already computed in
step 2), to get the accelerations of all joints.

IV. CONNECTIVITY DESCRIPTION OFKINEMATIC CHAINS

A. Pointers Describe Open Kinematic Chains

For the efficiency of computation, and for the convenience
of implementation, we propose to usepointersto describe link
connectivity.Pointer is an important function of C/C pro-
gramming language and acts as an arrow from one link to an-
other. Since the value of a pointer is the address of a specified
datum, we can refer to the data of a link in issue immediately
through the pointer to it.

We use three pointers for each link to describe open kinematic
chains. The meanings of the pointers are illustrated in Fig. 7.
The parent pointer points the next link connected toward the
base link. Thechild pointer, on the other hand, points the next
link connected toward an end link. Thebrother pointer points
a link with the sameparent, in case the parent link has several
links connected toward end links.

The recursive dynamics computations of the Newton–Euler
formulation [12] are implemented using the three pointers and
recursive call of functions. For the forward path computations,
the functions are called recursively for thechild and brother
links after the computation for itself. For the backward path
computations, on the other hand, recursive calls are made be-
fore the computation for itself.

B. Virtual Links Describe Closed Kinematic Chains

The three pointers are applicable only to open kinematic
chains, since the parent–child relationship for a closed kine-
matic chain results in an infinite loop.

First, as illustrated in Fig. 8, we virtually cut one joint in each
closed loop to avoid infinite loops, just as we did in the dynamics
computation. Since the mechanism is no longer a closed chain,

Fig. 8. Describing closed loop by virtual link.

Fig. 9. Example of describing link structure.

we can describe it by the three pointers. To represent the con-
nection at the virtually cut joints, we add avirtual link to one
of the two links that had been connected by the cut joint. Since
virtual link is introduced only to describe a closed loop, it has
kinematic properties such as joint values and link length, but no
dynamic properties such as mass or inertia. In order to indicate
the real link of a virtual link, we introduce a new pointer called
real pointer. Thereal pointer is valid only for virtual links. Note
that the description of a closed chains is not unique and depends
on which joint in a closed loop is virtually cut.

Virtual links represent the kinematic constraints of closed
loops that each virtual link, and its corresponding real link
should be in the same position and orientation. If the dynamics
computation part finds a virtual link, it recognizes the real link
through thereal pointer and computes the matrix defined
in (10).

To summarize, any open or closed kinematic chains are de-
scribed by four pointers—parent, child, brother, andreal—and
avirtual link corresponding to each closed loop. An example of
a description of a closed kinematic chain is shown in Fig. 9. The
advantages of our approach are as follows.

• It is suitable for recursive implementation of dynamics
computations.

• It is easy to find out closed loops, since each closed loop
has a corresponding virtual link.

• It is a simple choice of virtual cut joints for dynamics
computation. They coincide with the joints of the virtual
links.

• There are less data and computation for link connectivi-
ties. They are proportional to the number of links.
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Fig. 10. Example of link connection.

Fig. 11. Description of link connectivity before and after connection of
Fig. 10.

V. DYNAMICS COMPUTATION OF STRUCTURE-VARYING

KINEMATIC CHAINS

A. Structure-Varying Systems

Unlike industrial robots, the structure of human figures and
animal figures may vary in time as they move. A human figure is
a free-floating open kinematic chain of tree structure by himself.
When he grabs a high bar with the both hands, he makes a closed
kinematic chain. He might form another open kinematic chain
by releasing one of the two hands. Even for a simple walk, dy-
namics computation of human figures might need to switch and
use three models of kinematic chain: an open kinematic chain
with only the left foot on the ground, a closed kinematic chain
with the both feet on the ground, and another open kinematic
chain with only the right foot on the ground. With conventional
computation algorithms, we would have to prepare several dif-
ferent models and switch between them. We call such systems
“structure-varying” ones, whose dynamics computation, to our
knowledge, has not been established in literature.

The aim of this section is to develop a general method to
handle structure changes seamlessly without switching between
different dynamical models and algorithms. In Section V-B, we
show that the algorithm developed in Section IV can attain the
goal by taking an advantage of simple maintenance of link con-
nectivity using pointers and virtual links.

B. Link Connectivity Maintenance

First, consider a case in which two links are connected to
create a new joint. If a closed loop is generated by the connec-
tion, as in a case illustrated in Fig. 10, we add a virtual link at
the new joint. The procedure is as simple as the following.

1) Create virtual linkLink 4vwhose real link isLink 4.
2) Add Link 4v to the data as a child ofLink 3.

This is easily programmed and computed online. The descrip-
tions of link configurations before and after the connection are
shown in Fig. 11.

Fig. 12. Open kinematic chain generated by link connection.

Fig. 13. Possible change of link connectivity description due to connection of
Fig. 12.

Fig. 14. Closed kinematic chain with free joint.

In the case where a free-floating chain is connected to another
chain, the situation becomes complicated. Fig. 12 shows a case
whereLink 1of a free-flying chain is connected toGroundand
a new joint is created. Since the structure after the connection
is apparently an open chain, it seems natural to change the data
as shown in Fig. 13. The remarks “Rotate” and “Free” in the
figure indicate the joint types. One must notice, however, that it
requires inversion of the parent–child relationship ofBaseand
Link 1, which results in modification of the Denavit–Hartenberg
parameters, the values of some dynamic parameters, and the
indexing of joints. The modification is not difficult, but needs
additional computation, which is crucial if the structure varies
in real–time. When the structure change is known beforehand,
the computational burden is reduced by preparing different con-
nectivity models in advance, which would be, however, as te-
dious and complicated as switching between different dynam-
ical models and algorithms.

We propose to treat this case exactly in the same way as the
previous case as follows.

1) Create a virtual link ofLink 1 and name itLink 1v.
2) ConnectLink 1v to Ground through the new rotational

joint.
Fig. 14 shows the description of new structure, which does

not require the inversion of the relationship ofBaseandLink 1.
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Note that the number of links increases only by one as ex-
plained in Section VI-B, although the amount of dynamics com-
putation in this case becomes larger than that when it is treated
as an open chain. Therefore, we might need more careful com-
parison of computation loss due to ease of connectivity main-
tenance and computation gain due to increase of the number of
joints. However, we claim the advantage of the above procedure
from the following two viewpoints.

1) Simplicity of algorithm is valuable for programming and,
eventually, offers better usability for the end-users.

2) The computation gain due to increase of the number of
joints would be reduced in time by employing parallel
processing [16], although the computation for connec-
tivity maintenance cannot take an advantage of paral-
lelism.

In the rest half of this section, we discuss the procedure for
cutting a connection of two links at the joint between them. Note
that this is a physical cutting, while the cutting in dynamics com-
putation was virtual.

If the cut joint is related to a virtual link, the procedure is
exactly the opposite of that in link connection. First suppose,
in the structure after connection in Fig. 10, the joint between
Link 3 andLink 4 is cut, which is handled simply by deleting
Link 4v. For a human figure, connections and cuts commonly
occur at the hands or feet. Therefore, when human figures are
concerned, we can generally assume that cutting occurs only at
the joints related to virtual links.

In general kinematic chains, however, this is not always the
case. Even if the cut joint is not related to a virtual link, structure
change can be readily handled by introducing a free joint as in
Section VI-B. Suppose, in the structure after the connection in
Fig. 10, that the joint betweenLink 1 andLink 3 is cut. The
procedure in this case becomes the following.

1) Cut the parent–child relation betweenLink 1 andLink 3.
2) ConnectLink 3 to Baseby a free joint.

The link structure and its description are shown in Fig. 15. The
connection betweenLink 3andLink 4 is maintained by the vir-
tual link Link 4v.

An alternative to deal with this situation would be to cutLink
3 from Link 1 and set as a child ofLink 4 in place of the virtual
link Link 4v, in which case we can eliminate the closed loop.
However, this scheme has the same problem as discussed in the
examples of Fig. 12, that is, the inversion of parent–child rela-
tionship.

C. Velocity Boundary Condition After Structure Changes

When two links are connected with nonzero relative velocity,
discontinuous change of joint velocities occurs due to the col-
lision. When they are cut, we can assume zero relative velocity
except for those with explosions. The forward dynamics com-
putation requires the boundary condition of joint velocities after
the structure changes. In this section, we present an algorithm
to compute the velocity boundary condition.

Suppose that the two connecting links belong to chain 1 and
chain 2. Let be the generalized coordinates of
chains 1 and 2, the Jacobian matrices of the con-

Fig. 15. Link structure and its description after cutting.

nection point with respect to the generalized coordinates, and
their inertia matrices.

Also suppose that the generalized velocities change as much
as due to the impact forces applied to the two chains
at the connection point, and a new-degree-of-freedom joint

is created. According to the discussion in the previous
section, a new virtual link is created at the connection point. Let

be the Jacobian matrix of the virtual link with respect to.
The applied force and the change of momentum of each chain

are related by

(25)

Since is the reaction of , they satisfy

(26)

On the other hand, the following equation is yielded by the con-
dition that the velocity of the virtual link coincides with that of
its real link:

(27)

The impact force due to the collision has zero components along
the free unconstrained directions of the new joint. This con-
dition is expressed as

(28)

The change of generalized velocities and are com-
puted from (25) to (28) as

(29)

(30)

where

(31)

(32)

(33)

and is a 6 6 identity matrix.
If the connected two links are fixed to each other, namely

, and are computed by substituting to in
(29) and (30).

When the two links are in the same chain, the generalized
coordinates and the mass matrices in the previous discussion
coincide with each other, while the Jacobian matricesand
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Fig. 16. Example of human model.

are different. Therefore, the following equation is used in
place of (25):

(34)

The unknown, , is solved by

(35)

where

(36)

(37)

(38)

VI. M ULTI-DEGREES-OF-FREEDOM JOINTS

A. Spherical Joints

Fig. 16 illustrates the joint configuration of an example of
human body model. The 40 degrees of freedom of the model
include 4 rotational joints and 12 spherical joints, which shows
that many joints in human bodies can be modeled as spherical
joints.

In robot manipulators, a spherical joint is mechanically im-
plemented as three successive rotational joints with their axes
intersecting at a point. With this mechanical implementation and
the modeling, the 40-degree-of-freedom model of the human
body would need 41 links to treat in dynamics computation.

Physiological structure or implementation of human body is
far more complex and beyond our scope of efficient compu-
tation. This fact requires and allows us to adopt a mechanical
model that is suitable for computational efficiency and not nec-
essarily constrained by mechanical implementation. As a com-
putational model of human figures, we assume a spherical joint
is equipped with a three-degree-of-freedom spherical motor or a
similar actuator. With this assumption, we can significantly re-
duce the number of links. In fact, only 17 links are required for

Fig. 17. Free-flying kinematic chain.

the model in Fig. 16 if spherical joints are considered. In addi-
tion, the description of link configuration becomes simpler and
requires no discussion of artificial kinematic singularity.

Three-degree-of-freedom spherical joints cause a difficulty
in numerical integration of relative orientation between the two
links connected by them. Although the Euler angles represen-
tation can avoid such problem, it has the problem of singu-
larity. Integration problem would arise when we apply other
methods such as the Euler parameters [14] to avoid singularity.
We present below a method of first-order Euler integration of
relative orientation using the Rodrigues’ formula [14], which is
often used for finite spatial rotation.

Let be the relative angular velocity and the relative
orientation of link with respect to its parent link at time. The
relative orientation at , , is computed by

(39)

where

(40)

(41)

(42)

if (43)

if (44)

and is a 3 3 identity matrix.
Spherical joints may be regarded as a combination of three ro-

taional joints whose axes lies on the , and axes of the link
coordinate. Therefore, relative angular velocities and accelera-
tions of the two links expressed in link coordinates correspond to
the joint velocity and acceleration of a single-degree-of-freedom
joint.

B. Free Joints

In order to treat the cases where the base link is not fixed to
the inertial frame, we introduce a six-degree-of-freedom “free”
joint between the base link and the inertial frame whose actuator
torque is always zero, as illustrated in Fig. 17. Thus, forward dy-
namics is computed in the same way as base-fixed chains. Note
that the six-degree-of-freedom joint is not decomposed into six
single-degree-of-freedom joints but is treated as one joint. This
can reduce the amount of computations especially for the recur-
sive computation of kinematics and dynamics.
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Fig. 18. Configuration in the numerical example.

Free joints may be regarded as a combination of three linear
joints that can move in , and directions, and a spherical
joint. Therefore, the linear and angular velocities and accel-
erations of the free link expressed in the link coordinate cor-
respond to the joint velocity and acceleration of a single-de-
gree-of-freedom joint. Integrating the angular elements of joint
velocities and accelerations is done in just the same way as
spherical joints. The three elements of the linear part can be in-
tegrated independently as in three separate linear joints.

VII. EXAMPLES

A. Computation of and

We first show an example of computing the matricesand
for a simple structure. Consider the case already illustrated in

Fig. 14, where the two-linked free-flying chain was connected
to the ground through a new rotational joint attached to its end
link. This structure would be treated as an open kinematic chain
with two joints in conventional methods where we would have
to pay the cost of replacing the kinematic model of the free-
flying chain with the new two-joint model. In our scheme, on the
other hand, it is described as a closed kinematic chain with eight
joints, six of which are not actuated, maintaining the original
parent–child relationship for generality and simplicity.

Suppose the chain is in a simple configuration shown in
Fig. 18(a). Fig. 18(b) shows the existence of the virtual link
Link 1v and the link coordinates. Coordinates is fixed on
Link 1 and coincides toLink 1v coordinates. Let – be the
linear and angular velocities ofBase, the joint angle ofLink
1, the joint angle ofLink 1v, and . From
the constraint that linear and angular velocities ofLink 1v

coordinates should be equal to those of, we can derive the
constraint matrix as

(45)

Since , the row rank of is 6, is equal to , and the
degrees of freedom of the structure become

, which is equivalent to that of serial chain with two
joints.

Now, we choose two dependent columns from to select
the two generalized coordinates. By simple visual inspection, it
turns out that each of columns 2–5 are linearly independent and
cannot be replaced by a linear combination of the other, and
should be included in of (14). Therefore, the generalized
coordinates should be chosen from, position ofBase, ,
rotation ofBaseabout its axis, , joint angle ofLink 1, or ,
joint angle ofLink 1v. If we choose and as the generalized
coordinates, is computed as

(46)

Since we have one closed loop, we have to cut one joint,,
to obtain the virtual open chain, which consists of seven joints

– . The actuated joints in this case areand . Thus, fol-
lowing the procedures illustrated in Figs. 5 and 6, the two ma-
trices and are formed as follows:

(47)

(48)

B. Simulations

We show two examples of simulations of a simple human
figure with structure changes. The algorithm is implemented
using Microsoft Visual C and runs on a PC with Pentium
Pro 200-MHz processor and an OpenGL graphic board. The
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Fig. 19. Sixteen-degree-of-freedom human figure in the simulations.

Fig. 20. High bar example of simulation of human figure.

Fig. 21. Swing example of simulation of human figure.

human figure in the simulations has 16 degrees of freedom (four
for each arm and leg) as illustrated in Fig. 19. We applied zero
torques except for the case when we need to restrict the joint
angles within their limits. The sampling time for the forward
dynamics is approximately 25 ms in both examples.

High Bar : Fig. 20 shows a human figure playing high bar
and releasing the right hand during the motion. Initially, there is
a rotational joint between each hand and the bar, one of which is
cut at an arbitrary given time. The connections are maintained,
as discussed before, by two virtual links, whose real links are
left and right hands. One of them is deleted when the cut occurs.
The figure will be completely free-flying if the other virtual link
is also deleted. In this case, including free joints and joints at the
hands, we initially had 24 degrees of freedom in total and used
23 degrees of freedom after releasing the right hand.

Swing: What happens if a swing breaks down while you are
playing on it? The answer is shown in Fig. 21. Each hand and
the rod of the swing are connected by a three-degree-of-freedom
spherical joint. There is a translational joint between each thigh
and the plate of the swing, which is programmed to be cut when
the thigh goes out of the plate. In this case, including the swing,
we initially had 30 degrees of freedom in total and used 28 de-
grees of freedom in the final figure of Fig. 21.

VIII. C ONCLUSION

The results obtained in this research are summarized by the
following six terms.

1) A dynamics computation algorithm for general closed
kinematic chains is developed by introducing the concept
of the generalized coordinates of closed kinematic chains
to describe their mobility and by developing an algorithm
to identify them automatically.

2) Link connectivity notation via pointers and virtual links
is proposed, which is suited for both implementation and
execution of dynamics computation algorithms.

3) A systematic and seamless online procedure of connec-
tivity maintenance is developed. Any link connection or
joint cutting are handled online, and there is no need to
prepare every possible kinematic chain in advance.

4) A method of computing the velocity boundary condition
after configuration changes is established, which is re-
quired when links are connected or cut with nonzero rel-
ative velocity.

5) It is shown that the number of links is reduced by consid-
ering 3-DOF spherical joints. We proposed to use 3-DOF
spherical joints to model human figures for representa-
tional and computational simplicity. A method of inte-
grating the relative orientation of the two links connected
by a spherical joint is also presented.

6) The algorithms were implemented and examples of sim-
ulating motions of human figures verified their feasibility
and computational efficiency.
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