Proceedings of the 2002 IEEE
International Conference on Robotics & Automation
Washington, DC « May 2002

Synergetic CG Choreography through Constraining and Deconstraining at Will

Katsu Yamane and Yoshihiko Nakamura
e-mail: {katznakamura}@ynl.t.u-tokyo.ac.jp

Department of Mechano-Informatics, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan

Abstract

This paper presents an interface for creating whole-
body motions of human and animal characters without
reference motion. Its basic function is to enable an-
imators to generate a matural motion by dragging a
link to an arbitrary position with any number of links
pinned in the global frame, as well as other constraints
such as desired joint angles and joint motion ranges.
Each constraint can be switched on or off, strength-
ened or weakened for each joint at a user’s will. The
interface is based on a new online inverse kinematics
technique that allows more flexible attachment of pins
and various types of constraints. Editing or retarget-
ing captured motion requires only a small modification
to the original method, although the method can create
natural motions from scratch. We also demonstrate
the power and usability of the proposed method by a
number of example motion clips.

Key Words — Animation, Online inverse kinemat-
ics computation, Multiple constraints, Motion editing,
Joint motion range.

1 Introduction

Creating realistic motion of human characters still
relies heavily on an animator’s skill or motion cap-
ture techniques. Moreover, even if a motion clip was
created through hard work, it is difficult to modify
it to reuse in another scene or for a different charac-
ter. There is urgent need of ever increasing quantities
of digital animation content for films, internet, and
games. Handy and powerful tools for creating and
editing whole-body motions without special knowl-
edge are essential.

For this purpose, we have developed an interface for
choreographing human characters and implemented it
as the computational engine of a CG animation soft-
ware package. The interface is based on a methodol-
ogy which we call pin and drag, also known as artic-
ulated figure positioning[1, 2]. Its basic function is to

0-7803-7272-7/02/$17.00 © 2002 IEEE

855

Fig.1: The concept of pin-and-drag interface

enable the user to drag a link to an arbitrary position
with any number of links pinned in the global frame,
as illustrated in Fig.1. Many results show that the tool
is capable of creating natural and human-like motions
through only a few pin-and-drag procedures without
any reference motion, even by untrained people. The
key for this intuitive interface is the reduction of de-
grees of freedom of a highly complex human character
by way of applying constraints on link positions, joint
angle errors and joint motion ranges.

This methodology is also interesting from a biolog-
ical point of view. In synergetics, it has been revealed
that many natural systems are composed of combina-
tion of a large number of degrees of freedom and con-
straints. For example, the human body is composed
of many bones and muscles. Its apparent degrees of
freedom, however, are far fewer than the number of el-
ements included, due to almost equivalent number of
constraints. At the human motion level, although the
human body itself has hundreds of degrees of freedom,
its motion is constrained by various factors such as in-
ternal coupling of joints, joint motion ranges, contacts
with the environments, and so forth. Our methodol-
ogy mathematically imposes constraints by pins and
extracts synergetic effects by drags. Namely, the re-
duced degrees of freedom offer an ease of control and,
simultaneously, provide the resultant motions with a
natural and human-like flavor.

Motion capture is a powerful alternative to our ap-
proach. In fact, many motion libraries and tools for

editing and retargeting captured motions have been
developed and even commercially available. Much of
the recent research focuses on motion editing under
the existence of motion clips instead of creating a new
motion from scratch. Published results include re-
targeting a motion to another character[3, 4], blend-
ing and connecting multiple motions while preserving
the kinematic constraints in the original motions[5, 6],
and modifying motion itself using kinematics[7] or
dynamics[8, 9, 10]. However, motion capture is not
the final solution because of the following two disad-
vantages. First, we have to capture or purchase new
motion data every time we need a motion not included
in our library. Secondly, motions generated from a sin-
gle library tend to be relatively uniform. Users may
want to change the motion slightly not only to fit the
character or situation, but also to retouch it just for
their taste, which again requires high skill and expen-
sive software.

This paper describes the computational details of
the pin-and-drag interface for creating natural mo-
tions of human and animal characters without using
any captured motion. By applying appropriate fixed
pins, the user can create a whole-body motion in real
time by a few pick-and-drag procedures. One can also
specify other constraints such as desired joint values
and joint motion ranges, which are useful for creat-
ing cyclic and human-like motions. The method is
naturally extended to editing and retargeting existing
motions by allowing moving pins and time-dependent
desired joint values.

2 Overview
2.1 Pin-and-Drag Interface

The task of the computational engine for the pin-
and-drag interface is to generate a motion in which

1. the link specified by the user (dragged link) fol-
lows the indicated path,

. any number of links specified by the user (pinned
links) stay at their fixed positions,

each joint angle stays in its motion range, and

each joint angle stays as close as possible to the
given desired angle.

There are two obvious difficulties in computing the
solution that satisfies all of these constraints:

856

e it is difficult (or virtually impossible) to derive
an analytical method that can handle the general
cases, and

e the constraints often conflict with each others
(simply consider a case where one drags a link
beyond its reachable space determined by the
pinned links)

The first problem comes from the fact that the con-
straints are expressed by a set of complicated non-
linear equations, and the second implies that these
equations may not have an exact solution.

The first problem is solved by introducing differ-
ential kinematics that gives a linear relationship be-
tween the constraints and the joint velocities. In or-
der to deal with the second problem, we divide the
four constraints into two priority levels[11]. The first
constraint (the dragged link) is given the higher pri-
ority with which the solution never loses exactness.
The other constraints are given the lower priority. To
satisfy the constraints with the lower priority, the so-
lution is looked for in the null-space of the first con-
straint. If there is a conflict among the constraints,
a least-square optimization is done in the null-space
to find the best approximation for the lower-priority
constraints.

Although the null-space decomposition and the
least-square solution are commonly done using the
pseudoinverse, it yields in the neighborhood of sin-
gularity extremely large and, therefore, physically in-
feasible solutions. The singularity-robust (SR) inverse
[12] is adopted to avoid the problem, since multiple
constraints and conflicts among them are the issue to
be dealt with in this paper and necessarily face singu-
larities. The SR inverse eases the singularity problem
by allowing errors near singular points. We introduce
the feedback controller, as a device for the recovery of
errors once the singularities or conflicts disappear. By
integrating the SR inverse and the feedback controller
into the differential kinematics of constrained kine-
matic chains, the pin-and-drag interface is equipped
with an “elastic” property, natural response, and reli-
ability.

2.2 Summary of the Algorithm

The algorithm consists of the following five steps:

1. compute the general solutions of joint velocities
that moves the dragged link towards the indicated
position (section 3.1)

2. compute the desired velocities of the other con-
straint variables taking account of their reference
and current values (section 3.4)

compute the Jacobian matrix of the constraint
variables with respect to the joint values (section
3.3)

. using the general solution in step 1, find a par-
ticular solution that closely satisfies the desired
velocities of the constraint variables (section 3.2)

The computational scheme proposed here has a
number of advantages over the previous ones with sim-
ilar objectives, as follows:

e the posture of the whole body is determined by
moving a single link; in other words, a single drag
affects the whole body

e any link can be dragged

e there is no limitation for the selection and number
of pinned links

e constraint variables can be instantly included or
removed

e relative importance of the constraint variables can
be considered and tuned.

2.3 Relationship with the Previous

Works

The main objective of this research is to develop
an interface that enables people to generate whole-
body motions of articulated figures with little effort
and preferably without captured data. Although there
is a body of related research in this field, most of these
efforts aim to solve the problem of editing or retarget-
ting prerecorded data, deferring the problem of gener-
ating new motions as too hard.

Inverse kinematics is the key issue of this research.
Many previous works on inverse kinematics problem
use global optimization over the spacetime constraint
of motion[3, 5, 6, 7]. In [3] the SR-inverse is employed
to avoid singularity problems with the Jacobian ma-
trix.

Online computation using local optimization, on
the other hand, was investigated by Choi et al.[4].
This work is based on the feedback control and the
null-space method similar to ours. In [4] the pinned
links are assumed only at the end-links, due to the
fact that the increase of constraints makes the Jaco-
bian matrix ill-conditioned and the troubles of singu-
larity cannot be avoided by the use of pseudoinverses.

857

Our approach allows as many pins as we need, even
at intermediate links or two neighboring links, thanks
to the SR-inverse. Maciejewski[13] discussed a similar
idea called the damped pseudoinverse.

Badler et al.[1] and Phillips et al.[2] also developed
a pin-and-drag interface, and implemented it as a part
of the 3D animation system Jack[14]. It is not surpris-
ing that the algorithm for computing the inverse kine-
matics with multiple goals is similar to ours. However
there are several important differences:

e In Badler’s system, the link hierarchy was recom-
puted so that the dragged link becomes the root,
while in ours the link hierarchy does not change
once the structure is given, thanks to the virtual
link representation of closed loops proposed in
[15]. We can eliminate the overhead to switch
the dragged links, providing a more responsive
and comfortable interface to the user.

e Badler’s system considered joint motion range of
rotational (or 1DOF) joints, and it would be dif-
ficult to include spherical-joint limits with their
projection scheme.

e The normal pseudoinverse was used in their com-
putation of inverse kinematics. The SR-inverse
we use, in contrast, allows us to apply as many
constraints as we need, without worrying about
the singularity.

Representation of motion ranges of 3DOF spheri-
cal joints is fundamental to obtain natural behaviors
of human characters. Simple inequality representa-
tion of the Euler angles is inappropriate due to their
nonlinearity[16, 17]. A precise anatomical modeling
has been proposed recently[17]. In this paper, we pro-
pose a simple representation of spherical joint limit
modeling which is efficient for online computation.

3 Computational Details

3.1 The Dragged Link

First we compute @ with which the dragged link
exactly follows its reference of velocity frpef and posi-
tion Trpef. Let rp denote the current position of the
dragged link. Its desired velocity is computed by

i‘dp = f;ff +Kp(rTPef —7rp)

(1)

where Kp is a posipive—deﬁnite gain matrix. The re-
lationship between @ and 7p is given by

ip=JpO

(2)

where Jp is the Jacobian matrix of the position of
dragged link with respect to the joint angles. The gen-
eral solution @ for the desired velocity #% is computed

by
(3)

where Jga is the weighted pseudoinverse of Jp, F
is the identity matrix of the appropriate size, and y
is an arbitrary vector. The feedback control is ap-
plied only to eliminate the numerical errors. Weighted
pseudoinverse[18] may be used in the above equation
instead of the normal pseudoinverse to characterize
the joint motions.

0=J%Lit+ (E—-J4LTp)y.

3.2 Lower-Priority Constraints

The general solutions of Eq.(3) is rewritten by

0=0,+Wy 4)
where W £ E — J%,J p and 0y £ J4.

Suppose Nr pinned links whose velocities are de-
noted by 7r;(i =1...Np), Np joints with their joint
velocities 0 p, and Ny, joints with their joint velocities
0., out of the motion ranges. Note that Np may vary
anytime during the motion, whereas Np stays con-
stant until it is changed by the higher level of control.
Using the vectors, we define p,,,, as follows:

. NV) . .1 \T

Pava = (i PN, Op 6) (5)
Poue 18 related to the joint velocity 0 by a relationship
similar to Eq.(2):

pauw = JC“—LIG' (6)

Computation of J 44, is discussed in the following sec-
tion.

The arbitrary vector y is computed as follows: We
first compute the desired velocity p?,,.. to take account
of the errors between the constraint conditions and
their current values as described in section 3.4. Sub-
stituting Eq.(4) into Eq.(6) yields

(7)
2 Jowbo. Using S 2 JuweW and
JAY /JN 2 pt,. — P’.., we have a simpler form of the

equation:
Sy = Apauw' (8)

Since S is not always well conditioned, we use the SR
inverse to solve this equation. Denoting the SR inverse
of S by §*, y is computed by

pauz = pguz + Jaua Wy

where p2..

y = S*Apaur' (9)

858

The joint velocity @ is obtained by substituting Eq.(9)
into Eq.(4), which is then integrated to yield the joint
angle @ for animation.

3.3 Computation of Jg,;

Let Jp;(i =1... Np) be the Jacobian matrix of r p;
with respect to the joint angles. Then, for all pinned
links we have

TR = inH. (10)

For the joints with desired angles, the relationship
between their velocities @ and 6 is described by
Op =Jpb (11)
where J p is the matrix whose (i, j)-th element is 1 if
the i-th element of @p corresponds to the j-th element
of @, and 0 otherwise.
_ Similarly, we can describe the relationship between
0 and the velocity of @, as follows:
O, =J.0 (12)
where J, is the matrix whose (7, j)-th element is 1 if
the i-th element of @, corresponds to the j-th element
of 8, and 0 otherwise.
Combining the above-defined matrices, Jgyuz 18
formed as follows:
Jowe = (JE, Tha, J5 JT)T (3)
The computation of columns of Jp;,Jp and Jp
corresponding to spherical joints is mentioned in sec-
tion 3.5.

3.4 Computation of pZ,,

The desired velocity of each pinned link #%.; is com-
puted by the following feedback law:

i = Krpi(ry] —rpi) (14)
where %/ is the reference position where the link

should stay, and K ; is a positive-definite gain matrix.

édD and 02 are collections of the desired joint ve-
locities. The number of elements in the vectors corre-
sponding to each joint equals to the degrees of freedom
of the joint. A rotational joint, for example, thus has
one element, while a spherical joint has three. In this
subsection the methods to compute the elements for
1DOF joints are presented. Section 3.5 extends the
ideas to 3DOF spherical joints.

If a desired joint angle Hgiif is given to joint 4, its
desired joint velocity 8%, is computed by

é%i = KDi(erDeif — i) (15)
where Kp; > 0is the gain and 6; is current joint angle.

If joint 4 is exceeding its joint motion range, its
desired velocity 6¢. is computed by

é%i:{

where 6727 and 67" are the maximum and minimum

joint angles, respectively, and K; is a positive scalar
))

gain.

KLZ(GTZ‘” — 0L1) if (0[/z > Hﬁ”)

: i 16
KLi(aﬁm - eLi) if (eLi < Qﬁm) ()

3.5 Handling Spherical Joints

Desired Joint Value

The joint value R; and the joint velocity w; of a spher-
ical joint are defined as the 3x 3 orientation matrix and
its associated angular velocity respectively, described
in its parent link frame.

When a spherical joint is given a desired joint value
Rp; € R3X3, we compute its desired joint velocity as
follows: We first compute the error vector e; between
the current joint value R; and Rp; by

L [ARi(1,2) — AR;(2,3)
AR;(2,1) — AR;(3,2)
AR; 2 Rp;R” (18)

where AR;(m,n) denotes the (m,n)-th element of
AR,. Then, the desired angular velocity w,; is com-

puted by[19]

d

Wp; = —KDiei (19)

where K p; is a positive-definite gain matrix. Equa-
tions (17)—(19) are used for spherical joints in place of
Eq.(15).

The Jacobian matrix to be included in J r;, J p and
J for a spherical joint has three columns, each of
which corresponding to the rotation around z,y or
z axis. Each column is computed just as if there is
a rotational joint with the axis in the corresponding
direction.

Joint Motion Range

The motion range of a spherical joint is expressed as
a region in a three dimensional space. The geomet-
ric representation of the region is important for real-
time computation. The region would show a complex

859

twist angle range

link direction range

Fig.2: Joint motion range of a spherical joint

shape if we represent it with the common coordinates
such as the Euler angle, for example, due to their
nonlinearity. In this subsection, we propose an in-
tuitive representation of spherical joint motion range.
Although one may see a similarity to the equivalent
angle-azxis representation[20], it is different in the sense
that the proposed one consists of two sequential rota-
tions. The representation provides three parameters,
two of which describe the link direction and the other
denotes the twist angle at each direction, as illustrated
in Fig.2.

When R; is the identity, the link is at the nominal
direction and we represent it by unit vector d?. The
current link direction d; is obtained by rotating d?
about vector a; that lies in the two-dimensional plane
orthogonal to d?. The magnitude of a; is not unit, but
sin(y;/2) where -y; represents the angle of rotation.
The twist angle « is defined as the angle by which
the link frame after the first rotation around a;, is
rotated to make the current link frame R;. The entire
configuration of a spherical joint is therefore included
in a cylinder whose axis is d?, radius 1, and height 27.

In our implementation, dy is set as (1 0 0)7 for all
joints and therefore a; stays in the yz plane, namely
a; = (0 a, a.)T. Thus the motion range is described
by a cylinder with an axis parallel to the « axis.

ay, a. and a are computed as follows: Since d? =
(100)T, we have

di = R;d’
= (Ri(L1) Ri(2,1) R,(3,1))". (20)
Therefore a, and a. are computed by
7 71
o = ——RGU (21)
2(1+ R;(1,1))
R;(2,1
a 1) (22)

2(1+ R;(1,1))

Then, a is computed by comparing the y and z axes of
the frame after the rotation around a; and the actual

current frame since their x axes coincide with each
other. Although Eqs.(21)(22) show singularity at ~;
=+, it is not a practical problem since it is usually out
of the joint limit.

Our next step is to determine whether the com-
puted parameters are inside or outside of the motion
range. For ease of computation, we describe the link
direction range by a collection of triangle patches in
ay-a. plane. The whole motion range is represented
by a collection of triangular cylinders with the triangle
patches as their footprints and « axis as their axes.

We first look for the triangle in which (ay,a-,0) is
included. If no triangle is found, the joint is out of
the joint motion range. Otherwise, we then proceed
to check if (ay,a.,a) is between the upper and lower
limits of the triangle.

If the parameters (a,, a., o) are out of the range, we
compute the desired velocity to bring the joint back
into the range and include it in pffw. For this purpose,
we define the standard orientation Rg; for each joint,
and compute the desired joint velocity wp; to move
the joint towards Rg;. This is achieved by simply
substituting Rg; into Rp; in Eq.(18) and wy,; into
wp; in Eq.(19).

In our model, the motion ranges of 10 spherical
joints are modeled by 8 to 35 trianglular cylinders de-
pending on their shapes. Thanks to the simplicity of
computation, handling spherical joints did not affect
the real-time performance of the system.

4 Motion Editing in Motion

The computation in section 3 showed the algo-
rithms for static choreography, where the desired po-
sitions of pins, r}.eif , and the desired joint angles, Orgif ,
were assumed constant, although the dragged link had
its velocity i"rpef . Extending the algorithm to include
velocities of TTFeif and HTDeif for dynamic choreography
is straightforward. By this extension, we can apply
the algorithms to motion editing in motion and re-
targetting captured data. Changing the pins and the
dragged link one after another while editing enables us
to add motion flavors step by step and generate rich
and complex motions of characters.

The following two modifications are required to ap-

ply the above method to motion editing in motion:

e The position of the pins are obtained by direct
kinematics computation for each frame of the ref-
erence motion. Since each pin has reference ve-

locity 75/, the following equation is used instead

860

of Eq.(14):

.d _ wref
Tri =Tp; + Kri

k2

() —rri).(23)
e The desired joint values are set as the joint value
data in the reference motion. Using the reference

joint velocities érgf, the following equation is used
instead of Eq.(15):

- ref

nd re
0, =0, + Kp(0y' —0p) (24)

5 Examples!

The proposed method was implemented as the
computational engine of CG animation software
Animanium™ . The software is equipped with graph-
ical interfaces to select pinned and dragged links, de-
fine weight, feedback gain and motion range for each
joint. The motion of the mouse is mapped into the
three-dimensional motion of the dragged link. The
computation time is small enough for real time motion
generation of a human model with 45 to 54 degrees of
freedom on a PC with a PentiumIII 1GHz processor.

5.1 Pin and Drag

Fig.3 shows various postures generated by a single
pin-and-drag procedure from the initial posture (a),
with both hands and feet pinned.

5.2 Real-Time Motion Generation

Images in Fig.4 are taken from a video clip recorded
as the user dragged the right hand of the character for
4 seconds. The pins were set at five links — the toes,
heels, and the left hand, shown in blue. Note that we
can set a pin at a link not necessarily at the end of a
chain, such as heel links. A single dragging created a
realistic motion like picking up an object on the floor.

5.3 Motion Editing in Motion

Figure 5 shows results of editing prerecorded mo-
tion. The original motion (above) was created by
a professional animator using the software, and the
modification was done by one of the authors. The orig-
inal motion was a short walk consisting of 6 keyframes.
Both feet were pinned by moving pins that move along

1Video clips of motions generated using the software
are available at the following URL: http://www.ynl.t.u-
tokyo.ac.jp/ katz/videos/index.html

Fig.4: An example of real-time motion generation

Fig.3: Postures generated by a single pin-and-drag; (a)
original posture, (b) pelvis dragged, (c) head dragged,
(d) left shoulder dragged

the trajectory determined by the original walking mo-
tion. Therefore, their positions do not change even
when we drag other links in the body. We modified the
second and third frames by simply dragging the head
and left hand so that the motion looks like avoiding
an object flying towards the character.

6 Conclusion

The contributions of this paper are summarized as
follows:

1. We developed computational algorithms for the
singularity-robust pin-and-drag interface to com-
pute natural-looking motions of human character.

861

2. In contrast to the other numerical inverse kine-
matics solvers, we can place any number of pins
to arbitrary links without causing troubles due to
the singularity of the Jacobian matrix.

. Implemented constraints include pins, desired
joint angles, and joint motion ranges. All these
constraints are handled in a uniform way.

. Motion editing in motion and retargeting cap-
tured motions are also realized by applying the
proposed method with reference motion data.

5. The computational algorithms were successfully
implemented demonstrated their computational
efficiency for real-time choreography without dif-
ficulty of use. Examples of created motions
demonstrated the usefulness of the developed al-
gorithms and software.

Acknowledgements

This research was supported by the CREST pro-
gram of the Japan Science and Technology Cor-
poration and the Information-Technology Promotion
Agency (IPA) Japan. The first author is supported
by the Japan Society for the Promotion of Science.
The software is used as the computational engine of
Animanium®™ (SEGA Corporation). The examples
in section 5 were generated using this software.

References

[1] N.I. Badler, K.H. Manoochehri, and D. Baraff. Multi-
dimensional Input Techniques and Articulated Figure
Positioning by Multiple Constraints. In Proceedings of
the 1986 Workshop on Interactive 3D Graphics, pages
151-169, Chapel Hill, NC, October 1986.

C.B. Phillips, J. Zhao, and N.I. Badler. Interac-
tive Real-time Articulated Figure Manipulation Us-
ing Multiple Kinematic Constraints. In Proceedings of

[10]

Fig.5: The original (above) and modified motions(below)

the 1990 Workshop on Interactive 3D Graphics, pages
245-250, March 1990.

Michael Gleicher. Retargetting Motion to New Char-
acters. In Proceedings of SIGGRAPH 98, pages 33—
42, 1998.

K.J. Choi and H.S. Ko. Online Motion Retargetting.
The Journal of Visualization and Computer Anima-
tion, 11:223-235, 2000.

C.F. Rose, P.-P. Sloan, and M.F. Choen. Artist-
Directed Inverse-Kinematics Using Radial Basis
Function Interpolation. Eurographics, 20(3), 2001.

C. Rose, B. Guenter, B. Bodenheimer, and M.F. Co-
hen. Efficient Generation of Motion Transitions us-
ing Spacetime Constraints. In In Proceedings of SIG-
GRAPH’96, pages 147-154, 1996.

J.H. Lee and S.Y. Shin. A Hierarchical Approach to
Interactive Motion Editing for Human-like Figures. In
Proceedings of SIGGRAPH’99, pages 3948, 1999.

Z. Popovic. Editing Dynamic Properties of Captured
Human Motion. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 670—
675, San Francisco, CA, April 2000.

N.S. Pollard and F. Behmaram-Mosavat. Force-Based
Motion Editing for Locomotion Tasks. In Proceed-
ings of IEEE International Conference on Robotics
and Automation, pages 663-669, San Francisco, CA,
April 2000.

K. Yamane and Y. Nakamura. Dynamics Filter —
Concept and Implementation of On-Line Motion Gen-
erator for Human Figures. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation,
volume 1, pages 688-695, San Francisco, CA, April
2000.

862

[11]

[12]

[15]

[20]

Y. Nakamura and H. Hanafusa. Task Priority Based
Redundancy Control of Robot Manipulators. Interna-
tional Journal of Robotics Research, 6(2):3-15, 1987.

Y. Nakamura and H. Hanafusa. Inverse Kinematics
Solutions with Singularity Robustness for Robot Ma-
nipulator Control. Journal of Dynamic Systems, Mea-
surement, and Control, 108:163-171, 1986.

A.A. Maciejewski. Dealing with the Ill-conditioned
Equations of Motion for Articulated Figures. IEEE
Computer Graphics and Applications, 10(3):63-71,
May 1990.

C.B. Phillips and N.I. Badler. Jack: A Toolkit for
Manipulating Articulated Figures. In Proceedings
of ACM/SIGGRAPH Symposium on User Interface
Software, 1988.

Y. Nakamura and K. Yamane. Dynamics Computa-
tion of Structure-Varying Kinematic Chains and Its
Application to Human Figures. IEEE Transactions
on Robotics and Automation, 16(2):124-134, 2000.

N.I. Badler, C.B. Phillips, and B.L. Webber. Simu-
lating Humans. Oxford University Press, 1993.

W. Maurel and D. Thalmann. Human Shoulder
Modeling Including Scapulo-Thoracic Constraint and
Joint Sinus Cones. Computers and Graphics, 24:203—
218, 2000.

Y Nakamura. Advanced Robotics—Redundancy and
Optimization. Addison—Wesley , Reading, MA, 1991.
J.Y.S. Luh, M.W. Walker, and R.P.C. Paul. Re-
solved Acceleration Control of Mechanical Manipu-
lators. IEEE Transactions on Automatic Control,
25(3):468-474, 1980.

J.J. Craig. Introduction to Robotics: Mechanics and
Control. Addison-Wesley, Reading, MA, 1986.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:
	header:

