Proceedings of the 2002 IEEE
International Conference on Robotics & Automation
Washington, DC « May 2002

Efficient Parallel Dynamics Computation of Human Figures

Katsu YAMANE*!

Yoshihiko NAKAMURA*!*2

e-mail: {katz,nakamura}@ynl.t.u-tokyo.ac.jp
*I Department of Mechano-Informatics, University of Tokyo
*2CREST, Japan Science and Technology Corporation

Abstract

An efficient parallel algorithm for forward dynam-
ics computation of human figures is to be proposed.
The algorithm is capable of handling any kinematic
chains including structure-varying ones. The asymp-
totic complexity of the algorithm is O(N) in serial
computation and O(log N) in parallel computation on
O(N) processors for most practical kinematic chains.
The idea is to assemble a kinematic chain by adding
the joints one by one and compute the constraint forces
at the new joints using the Principle of Virtual Work.
The parallelism of the algorithm can be adapted for
parallel processing systems with any number of proces-
sors by simply changing the assembly order. Simula-
tion examples on an 8-node cluster demonstrate the
effectiveness of the algorithm.

Key Words: Forward Dynamics, Parallel Compu-
tation, Human Figures, O(log N) Complexity.

1 Introduction

Forward dynamics of kinematic chains has wide
range of applications. The authors[l] have devel-
oped a scheme for computing the forward dynamics of
structure-varying kinematic chains and applied it to
a humanoid simulator[2]. The scheme can seemlessly
handle any open and closed kinematic chains and tran-
sitions among them. However, the algorithm requires
O(N3) computational cost, where N is the degrees of
freedom of the kinematic chain, and would have diffi-
culty in handling larger systems such as crowd, precise
anatomical human models, and so on.

In this paper, we propose an efficient algorithm for
parallel forward dynamics computation of structure-
varying open and closed kinematic chains. The algo-
rithm achieves O(N) asymptotic complexity for serial
computation and O(log N) time complexity for paral-
lel computation on O(N) processors for most practical
kinematic chains. The basic procedure of the algo-
rithm is, starting from a collection of free-flying links,
to assemble the chain by adding joints one by one and
compute the constraint force at the new joint. Then,
since the constraint force computed at the assembly
phase does not include the effect of joints added after
the joint, we need the disassembly phase to compute
the constraint forces in the completed chain, where the

0-7803-7272-7/02/$17.00 © 2002 IEEE

530

assembly disassembly

N S O
DO OOOD

%o Jto
PO D e

L Sf

Fig.1: The idea of the algorithm

joints are removed in the reverse order of the assembly.
The concept is illustrated in Fig.1.

Parallel computation is realized by utilizing the or-
der of assembly. During the assembly phase, if the
intermediate chains do not have connections between
each others, we can process the joint connection in
parallel. Increasing parallelism, however, simultane-
ously leads to increase of total computational cost. It
is therefore important to select appropriate assembly
schedule to optimize the algorithm to the number of
processors available.

Recent works on dynamics computation of kine-
matic chains include O(N) algorithms for serial
computation[3]-[8], O(log N) algorithms for paral-
lel computation [8]-[11], and iterative approximation
algorithms[11, 12]. Our method has three major ad-
vantages over previous ones:

1. Our method is based on a simple physical in-
tuition rather than complicated mathematical
devices[7, 8]. This fact eases the understanding
and implementation of the algorithm.

. The same algorithm can be used for serial and
parallel computations on any number of proces-
sors. The difference is only in the order of adding
and removing the joints in assembly and disas-
sembly phases. Therefore, we can easily cus-
tomize the algorithm for the available computa-
tional resource.

3. The algorithm gives an exact solution.

2 Overview

The idea of the algorithm is illusrated in Fig.1. The
free-flying links are assembled by adding a joint one by
one to form the target kinematic chain, and then dis-
assembled by removing the joints in the reverse order
to return to the initial state. We call the intermediate
kinematic chains found in the course of assembling as
subchains. The target kinematic chain may be assem-
bled in an arbitrary order. Therefore, if the subchains
do not have connections with each others, we can pro-
cess the assembly and disassembly computations in
parallel. In Fig.1, for example, the two joints added
or removed in steps 1, 2, 5 and 6 can be processed in
parallel. Thus, although the kinematic chain contains
5 joints, the total computation time would be almost
equivalent to handling 3 joints serially on one process.

Two quantities are computed in the assembly
phase: the constraint force at the new joint and the
acceleration of the points where new joints are to be
added in the future. Note that the joints to be added
in the future assembly steps are not considered at this
stage. This is why we need the disassembly phase
which computes the constraint forces in the target
chain. Once we have all constraint forces, the link
accelerations are easily computed by applying New-
ton and Euler equations of motion to each link. The
accelerations of two neighboring links are then used to
compute the acceleration of the joint between them.

The idea of assembling and disassembling links
is similar to Divide-and-Conquer Algorithm (DCA)
[9, 10] and Hybrid Direct/Iterative Algorithm[11], al-
though the involved computations are different.

3 Preliminaries and Notations
3.1 Notations
Variables related to link &

M, spatial inertial matrix (R%*°)
ci centrifugal, colliolis, gravitational forces (R%)
0 spacial velocity (R?)
N set of joints connected to link &
Variables related to joint i
Nes number of constraint conditions
Np; = 6 — N¢y, degrees of freedom
q; joint velocity (R™%)
T joint torque (RN7%)
I constraint force (RY¢")
Di number of the parent-side link
Ci number of the child-side link

531

joint i fi
Fig.2: Frames attached to joints and links

7; and f, are defined as the force and/or moment
applied to the link connected to the end-link side of
joint 4. The other link receives —7; and —f;.

Variables related to subchain A

Nia number of links
Nja number of joints
Nca total number of constraints
Npa total number of DOF
0. vector composed of). of all links (RGNLA)
ca vector composed of ¢ of all links (RGN“)
M 4 block diagonal matrix composed of M,
of all links (RONzax6Nza)
da vector composed of g, of all links (R™*4)
Ea set of external joints connecting subchain A
to other subchains
LA set of links connected to joints in £4

3.2 Joint Constraints and Joint Variables

We attach several frames to each links and joints as
shown in Fig.2, where link ¢; is connected to link p;
towards the end link. One frame is attached to each
link whose spatial velocity is denoted by 6} as defined
in the previous subsection. For joint ¢ connecting two
links p; and ¢;, we define two frames each fixed to one
of the links, whose spatial velocities are denoted by
—7;p, € R® and 7;., € R® respectively. Note that
the direction of the velocity of link p; at joint ¢ is
taken in the opposite direction to be consistent with
the definition of f, and T;.

We also give two matrices for each joint denoted by
Kc; € RVe6 and Kj;; € RN7*%. K¢, is given
such that the constraint condition at joint 7 is ex-
pressed as

Kci(fie, +Tip,) = O, (1)

while K j; is given such that the joint velocity of joint
1 is expressed as

(2)

q; = KJZ'(";‘Z',Ci + jﬂivPi)'

We assume K ¢; and K j; are constant for simplicity,
which is the case for most practical joint types, al-
though it is straightforward to include time-dependent
KCi or KJi.

Using the above quantities, we define the following
Jacobian matrices and their derivatives:

A 8ri,k .
ik = Ji
! 00, bk

A A .
H;; = KcoiJi hix=KciJ;,

J = Ji10y

A A .
Hjip=Kjidig hyiw=Kyij;-

3.3 Equation of Motion of a Subchain

Equation of motion of link k is described as

Mbp+ev= Y (H} o fo+HJp Tm).
meJy

3)
The acceleration of the frame attached to link k side
of joint ¢ is computed by

(4)

Using Egs.(1) and (4), the constraint condition at
joint ¢ connecting links p; and ¢; is described as

Fip=Ji 0 + Jik

H;., éci + Hip, 01% + hic, + hip, = 0. (5)
Combining Eq.(5) of all joints in subchain A yields
HA0,+hy=0 (6)

where H, € RMNo4*6Nta g 3 block matrix in the
following form:

Di &
Ha= 7 - I?Ii7pr Hi,ci
(7)
and h, € RN°4 is a vector in the following form:
hA == 7 hi,ci + hi,pi . (8)

Using H 4, the global form of Eq.(3) is described as
MuOs+ca=HYf, +HT 74 (9)
Eqs.(6)(9) are solved in terms of f, as

fa= SZI(—HAMZIHzATA +HAMZICA — hA)
(10)

532

Fig.3: Assembling two subchains

where

S\2H M7 HY. (11)

Evaluating Eq.(10) directly, as in most commercial
softwares, leads to an O(N?) algorithm, while making
use of the sparsity of S4 yields more efficient O(N)
solution[7].

Since 8y, #; 1 and f, change as the assembly phase
proceeds, we denote the subchain when the value was
computed by left-upper indices. Absence of the index
means that the value is for the complete chain.

4 Detalils
4.1 Assembly Phase

Suppose we are going to assemble subchains A and
B by connecting links p; and ¢; through joint i to build
subchain C as illustrated in Fig.3.

Before adding joint 7, the equations of motion and
kinematic constraints of subchain X (X = A, B) are

MxX0x +cx Hixfx‘FH?XTX (12)

HXXéx-l-hX = 0. (13)
A§; 4 and P#; g are computed by

Apia = Jiat04+ Jia (14)

Biip = JipP0s+7;p. (15)

where #; 4 and #; p denote the linear and angular ac-
celerations of the frames of the subchain A and B
side of joint i respectively. The Jacobian matrices
Jia € RS*6Nea and Jip € RO*ONLE gre written
in the following forms:

Jia
Ji.B

(O
(O

'Ii,Pi
Ji,ci

o)
0).

(16)
(17)

From Eqs.(12)(13), the constraint forces of sub-
chain A are computed by

AfA = S;l(—KcATAKgATA +HAMZICA — hA)
(18)

where

Sa
Ty

H M'HY (19)
JaMG T (20)

1>

Similarly for subchain B, B f 5 is computed by

Bfp=8(~KcpTEK gt + HpM glep — hp)
(21)
where Sp and T'p are defined in the same way.
When we connect subchains A and B through joint
i, we have the equations of motion

MA“O04 +cy = HchA-l-H;ATA
+H3:Aofi + H?i,ATi (22)
Mg®Op +cp = HLfp+HgTp

+H3:Bcfi + H§i7BTi (23)

and constraint conditions

H,%0,+h, = 0 (24)
HBCéB-}-hB = 0(25)
H; ,04s+his+H; 50 +hip = 0O(26)

where H@A é KCiJLA and HLB é KOiJi,B- Com-
bining Eqs.(22)(23) and Eqs.(24)—(26), we obtain

McC0c +cc = HLCfo+HY re (27)
Hccéc—i—hc = 0 (28)
where
A M (0
me & (M2 (20)
. A cH
%9, = < Céz > (30)
A cA
o 2 () ()
. . ng
fc = fe (32)
°f;
TA
TCO é TB (33)
Ti
. H, o
He =2 O Hpg (34)
H;,, H;p
ha
he 2 hp (35)
hia+h;p

Solving Eqs.(22)—-(26) in terms of ¢ f, and simpli-
fying it using Eqs.(14)(15)(18)(21) yields

Cfl- = —I‘;ilKoi(A’f‘i7A + B’f‘i7B + Pi’iKgiTi) (36)

where
Ti; = KciPi K¢,
P;; = Aapii+ABi;
Axi; = Ji,Xq’XJZX
by = M, -M/ HYS/ HxM,
Sx = HxMyHY.

Since *#;, and A, ;(* = A, B) of the subchains
are required to compute ¢ f;, we have to compute
%Fro (k € &) and Acj; for the coming assembly
computations, where j is the joint going to be added
next. First, using the relationship

Tho = Jk,CéC +Jkco (37)

Ci*kg is computed by

ka,c = Xi'k,X + AXk,i(Kgicfi + K?ﬂ'z) (38)

where Axyp,; = Jk7X<I>XJZX and X € {A, B} is se-
lected so that k is also included in Ex.

Next, we compute Acm, j(m €) which includes
all of the A¢ matrices required for the next assembly.
Now we have

Acmj = Tmc®cdle (39)
b = M- MSHLS; HoM' (40)
Sc = HcMZ'HL. (41)

We first yield a simplified expression of ®¢. Using
Eqs.(34)(29) and (41), S¢ is written as

Sa O Sy
Se=| O Sp Sg (42)
Sh Sk Sii
where
Sy = HAM'H],
Spi = —HzMgz'HT,
S £ H; \M 'H, + H, sM ;' H] .

which yields

Scaa Scap Scai
Stis Scep Scai (43)
SgAi SgBi Scii

Szt =

where
Scaa = S +8,'SaT;;ShS,
Scap = SZISAZ-I‘Z}SEZ»S;
Scai = —83'SaTl;;}
Sces = Sp'+S5'SeT;;SE:SE
Scpi = —SEISBZ'I‘ZZ-I
Sci = Ti}

Substituting Eq.(43) into Eq.(40) and simplifying it
using ® 4 and ®p, we obtain

ve=(350 wom) W

where
Poan = Pu-—B H] T H; ,®, (45)
®coap = -®AH[,T;'H;p®s (46)
®cpp = ®p—®pH, T H; p®p. (47)

Computing all elements of ®¢ requires O(N?) com-
putations. Our final goal is, however, to evaluate
Acnm,; that requires only selected blocks of @ be-
cause of the sparsity of J,, ¢:

Jmeo=(0 0) (48)

where p,, € L¢ is the link in subchain C that is
connected to joint m. We only need to compute the
(Pm,pj)-elements of ®¢ since Ay, ; is computed by

(49)

m and j may be in either subchain A or subchain
B. In case m € £4 and j € £4, for example, we use
the upper-left block of Eq.(44):

Ty (B4 — ®AH] T H; 4®4)T 5,
T ®adj p;

T AT KT KT A% 4T,
Apm,— Aam KT KA (50)

JﬂlaPm

Acmj=Imp,. Bcp,, \Pj Jj,pj :

IanLj

which only uses the quantities computed in the assem-
bly process for constructing subchain A. Other cases
are also handled in similar ways.

Computations for assembling subchain C' through
joint i consist of folowing four steps:
—l
1,7 9

1. compute P;; and T

[\

. compute ¢ f,,

[oV]

. compute Agm,. ., (m,n € E), and

. compute “#,, ¢ (m € Ec).

534

4.2 Disassembly Phase

The constraint forces computed in the assembly
phase are valid only in the corresponding subchains.
After the completion of the assembly phase, the val-
ues might have changed due to the effects of joints
added afterward. The disassembly phase computes
the constraint forces in the completed chain by dis-
assembling the subchains in the reverse order of the
assembly phase. When a joint is removed, its final
constraint force is computed, which in turn can be
regarded as an external force for the two subchains
which the joint had connected.

Suppose we are about to remove joint ¢. Joints in
Ec were assembled after joint i; therefore, they are
removed before joint i in the disassembly phase and
we already know the final constraint forces of joint
k € &, denoted by f,.

Regarding f, (k € &) as external forces, we have
the new equations of motions for subchains A and B:

Mubs+ca = HI fi+HLf,
+H§i’ATi+H§ATA
+ Z (HkT,Afk +H§k,ATk)
ke€a

Mpglg +cp = HiT,Bfi+H1T5’fB

+H§i,BTi +HjpTp
+ Z (H{,Bfk + H;k,BTk)
keép

and the equations of constraints:

HAéA-l—hA = O
HBéB-i-hB = 0
H;,0,+h;a = Hipbp+hip

where the unknowns are f;, f 4, f 3,04 and 8. Solv-
ing these equations in terms of f,, the final constraint
force is computed by

fi=F-T; /Ko ZA§k,i(ngfk + KJ7h).
(51)

Once the constraint force is computed, the accelera-
tions of the both sides of the joint are computed by
i x + Axii (KO f s+ Koi)
+ Z A§k,i(K£kfk +KJ7) (52)
where X = A, B. Finally, the joint acceleration is
computed by

Ti X

(53)

All the quantities except for f, (k € &) used to com-
pute g, are already computed in the assembly phase.

;= Ki(fig —i4).

4.3 Closed Kinematic Chains

We have two options to assemble a closed kinematic
chain in our algorithm: (1) add a joint to connect
two links in the same subchain, or (2) add multi-
ple joints simultaneously to connect two different sub-
chains. Since the latter approach is a straightforward
extension of the method described above, we present
the equations for the former approach.

Suppose we are going to add joint i to connect links
m and n, both in subchain A, and construct subchain
C. The equations of motion and constraint of sub-
chain A are exactly the same as Eqs.(12)(13). After
adding joint ¢, we have the following equations:

M %04 +ca

= H,f;+HJ i

+HLCf + H 74 (54)

H; .0, +h;y = O (55)
A

where H; » = Kcidia

form:

and J; 4 has the following

Jia=(...

)

Jim Jim -). (56)
Solving Eqs.(54)(55) yields a result similar to

Eq.(36):

Cfi =T Kci("Fipn+ i — PiKmi) (57)
where
T, = KciPiKG, (58)
P,; = Aai; (59)
Agiy = Ji,A‘I’AJZA (60)
®, = M,)-M,'H,S,'"H,M " (61)
S, = H.M'HY. (62)

In closed kinematic chains, the invertibility of I'; ; is
not guranteed. A singular I'; ; indicates indeterminate
constraint forces or inconsistent constraints.

4.4 Complexity

As is obvious from the algorithm described in this
section, the complexity of the algorithm depends on
the number of elements in £ of each subchain. This
relationship is similar to that of the number of han-
dles in DCA and its complexity[10]. In [10], detailed
discussion is made on reducing the number of handles
and balancing the assembly tree. The conclusions of
the discussion are summarized by the following points:

e The branching factor of the kinematic tree is lim-
ited up to three by link splitting.

535

Fig.4: A schedule for an 8-link serial chain

Fig.5: Another possible schedule

e Therefore, it is possible to limit the number of
handles to three.

e Although there exist cases where the number of
handles grow infinitely when we try to obtain a
balanced tree, we have several options to maintain
O(log N) time complexity.

From these points, we can conclude that our algo-
rithm also maintains O(N) and O(log N) asymtotic
complexity for serial and parallel computation respec-
tively for most practical kinematic chains.

5 Parallel Computation

5.1 Scheduling

The method described in the previous section as-
sumes nothing about the order of adding and remov-
ing joints in assembly and disassemly phases. In fact,
the parallelism and total computational cost are de-
termined by the scheduling. If we try to increase the
parallelism, the total computational cost grows up and
vise versa; therefore, it is less efficient to apply a sched-
ule intended for larger number of processes than avail-
able. One of the advantages of our approach is that
we can customize the parallelism and the total com-
putational cost only by changing the schedule.

Figures 4 and 5 show two possible schedules for
assembling an 8-link serial chain. It is obvious that
the former one has higher parallelism, since it allows
four processes to run in parallel at the first step and
requires only three steps in total. The latter one, on
the other hand, allows only two parallel processes and
requires four steps in total. Therefore, if we have more
than four processors, it is better to apply the former

Fig.6: Different schedules for a kinematic chain

schedule. Its total computational cost, however, is
worse than the latter. Therefore, if we don’t have that
many processors, it is better to use the latter order.

The issue here is how to determine the schedule
of the assembly and disassembly phases that makes
the best use of the available processors. We show an
intuitive strategy to obtain the optimal scheduling for
a given kinematic chain and the number of processors.
It is difficult to give an algorithmic strategy for general
cases and would be included in future works.

A schedule can be expressed by a binary tree like
(a)-(c) in Fig.6, which represent different schedules
for the kinematic chain in the left-hand side of Fig.6.
Each node represents a subchain and labeled by the
number of the last joint added to assemble the sub-
chain. Two edges starting from a node point the two
subchains connected by the joint. Null-pointing edges
mean that the corresponding subchain consists of a
single link.

A binary tree gives an intuitive idea of the par-
allelism and efficiency of the schedule: the number
of leaf nodes indicates the parallelism, and the depth
is nearly proportional to the computation time when
there exists more processors than the number of the
leaf nodes. Two strategies are derived from these facts:

1. the number of leaf nodes should be close to the
number of the processors, and

2. the depth of leaf nodes should be even.

5.2 Communication

Suppose subchains A and C in Fig.3 are processed
in different processes p, and p.. The following values
should be passed between the two processes:

1. In assembly phase, send the following data from
Do 1O pe:
(a) Aam,i(m € &y)
(b) AFm.a(m € Ea)
(c) required blocks of S

2. In disassembly phase, send f; from p. to p,.

536

Table 1: Computation time for serial chains [ms]

links 8 16 32
1 procs 1.31 | 2.75 | 6.08
2 procs || 0.984 | 1.87 | 3.93
4 procs || 0.897 | 1.70 | 3.39
8 procs — | 1.57 | 2.90
4 procs* — | 1.58 | 3.16

Table 2: Computation time for human figures [ms]

DOF 34 48
1 procs || 3.66 | 4.85
2 procs || 2.49 | 2.93
4 procs || 2.22 | 2.49

6 Simulation Examples

The presented algorithm was implemented on a
cluster of 8 workstations with PentiumIIl 1GHz pro-
cessor. The nodes are connected by Myrinet and have
parallel computation environment SCore[13] installed.

6.1 Computation Time

Table 1 shows the computation time for serial kine-
matic chains of 8 to 32 links connected by 3DOF spher-
ical joints. The links are distributed to all processes
evenly, except for the last case (marked * in the ta-
ble), where we used 4 processes but the numbers of
links assigned to them are not even. When a serial
chain is divided into 4 subchains processed by 4 pro-
cesses, the middle two subchains have two joints in
&, while those at the end have only one. Therefore,
the computational costs of the processes handling the
middle two subchains are slightly larger than the other
two even if the numbers of the assigned links are the
same. In the last case we moved one link each from
the middle subchains to the other two and tried to
make the computational costs, rather than the num-
ber of links, of the processes even. As a result, the
computation time was reduced greatly from the case
of 4 processes each with the same number of links.

Table 2 shows the computation time for free-flying
human figures of 34 and 48DOF on 1 to 4 processes.

6.2 Dynamics Simulation of Human Fig-
ures

Figure 7 shows snapshots from dynamics simula-
tion of a human figure including structure changes.
The figure initially held the environment by the both
hands, and then released the right and left hands. The
computation time in serial computation varies from
3.4 to 5.0[ms] depending on the number of connections
between the hands and the environment.

Fig.7: Dynamics simulation of structure-varying kinematic chain

7 Conclusion

We conclude this paper by emphasizing the follow-
ing three points:

e An efficient parallel algorithm for forward dynam-
ics of human figures was developed and imple-
mented. Its asymptotic complexity is O(N) for
serial computation and O(log V) for parallel com-
putation on O(N) processors for most practical
kinematic chains.

e The parallelism and total computational cost are
customized for parallel computation on any num-
ber of processors only by optimizing the schedul-
ing of assemly and disassembly phases. A novelty
of this algorithm is in the fact that there are no
algorithmic differences in serial and parallel com-
putation. This enables us to use the same pro-
gram on any systems from a single PC system to
a system of large PC cluster.

e Simulation results showed that the computation
time is effectively reduced by parallel computa-
tion. Forward dynamics computation of 48DOF
human figure takes less than 2.5ms on four pro-
Cessors.

The first author acknowledges the support by the
Japan Society for the Promotion of Science. This re-
search was supported by CREST program, the Japan
Science and Technology Corporation.

References

[1] Y. Nakamura and K. Yamane: “Dynamics Computa-
tion of Structure-Varying Kinematic Chains and Its
Application to Human Figures,” IEEE Transactions
on Robotics and Automation, vol.16, no.2, pp.124-
134, 2000.

[2] Y. Nakamura, H. Hirukawa, and K. Yamane et al.:
“Humanoid Robot Simulator for the METI HRP
Project,” Robotics and Autonomous Systems, vol.37,
pp.101-114, 2001.

537

(3]
[4]

[10]

[11]

[13]

R. Featherstone. Robot Dynamics Algorithm. Kluwer
Academic Publishers, Boston, MA, 1987.

D.S. Bae and E.J. Haug: “A Recursive Formulation
for Constrained Mechanical System Dynamics: Partl.
Open Loop Systems,” Mechanics of Structures and
Machines, vol.15, no.3, pp.359-382, 1987.

D.S. Bae and E.J. Haug: “A Recursive Formulation
for Constrained Mechanical System Dynamics: Par-
tII. Closed Loop Systems,” Mechanics of Structures
and Machines, vol.15, no.4, pp.481-506, 1987-88.

D.E. Rosenthal: “An Order n Formulation for
Robotic Systems,” The Journal of the Astronautical
Sciences, vol.38, no.4, pp.511-529, 1990.

David Baraff: “Linear-Time Dynamics Using La-
grange Multipliers,” In Proceedings of SIGGRAPH,
pp.137-146, 1996.

A. Fijany, I. Sharf, and G.M.T. D’Eleuterio: “Parallel
O(log N) Algorithms for Computation of Manipulator
Forward Dynamics,” IEEE Transactions on Robotics
and Automation, vol.11, no.3, pp.389-400, 1995.

R. Featherstone: “A Divide-and-Conquer
Articulated-Body Algorithm for Parallel O(log(n))
Calculation of Rigid-Body Dynamics. Partl: Basic
Algorithm,” International Journal of Robotics
Research, vol.18, no.9, pp.867-875, 1999.

R. Featherstone: “A Divide-and-Conquer
Articulated-Body Algorithm for Parallel O(log(n))
Calculation of Rigid-Body Dynamics. Part2: Trees,
Loops, and Accuracy,” International Journal of
Robotics Research, vol.18, no.9, pp.876-892, 1999.

K.S. Anderson and S. Duan: “Highly Paralleliz-
able Low-Order Dynamics Simulation Algorithm for
Multi-Rigid-Body Systems,” AIAA Journal on Guid-
ance, Control and Dynamics, vol.23, no.2, pp.355—
364, 2000.

F. Faure: “Fast Iterative Refinement of Articulated
Solid Dynamics,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol.5, no.3, pp.268-276,
1999.

Parallel and Distributed System Software Laboratory.
SCore. http://pdswww.rwep.or.jp/home.html, 2001.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header:
	footer:

