
E�cient Parallel Dynamics Computation of Human Figures

Katsu YAMANE�� Yoshihiko NAKAMURA����

e�mail� fkatz�nakamurag�ynl�t�u�tokyo�ac�jp
��Department of Mechano�Informatics� University of Tokyo
��CREST� Japan Science and Technology Corporation

Abstract

An e�cient parallel algorithm for forward dynam�

ics computation of human �gures is to be proposed�

The algorithm is capable of handling any kinematic

chains including structure�varying ones� The asymp�

totic complexity of the algorithm is O�N� in serial

computation and O�logN� in parallel computation on

O�N� processors for most practical kinematic chains�

The idea is to assemble a kinematic chain by adding

the joints one by one and compute the constraint forces

at the new joints using the Principle of Virtual Work�

The parallelism of the algorithm can be adapted for

parallel processing systems with any number of proces�

sors by simply changing the assembly order� Simula�

tion examples on an ��node cluster demonstrate the

e�ectiveness of the algorithm�

Key Words� Forward Dynamics� Parallel Compu�
tation� Human Figures� O�logN� Complexity�

� Introduction

Forward dynamics of kinematic chains has wide
range of applications� The authors��	 have devel�
oped a scheme for computing the forward dynamics of
structure�varying kinematic chains and applied it to
a humanoid simulator�
	� The scheme can seemlessly
handle any open and closed kinematic chains and tran�
sitions among them� However� the algorithm requires
O�N�� computational cost� where N is the degrees of
freedom of the kinematic chain� and would have di��
culty in handling larger systems such as crowd� precise
anatomical human models� and so on�

In this paper� we propose an e�cient algorithm for
parallel forward dynamics computation of structure�
varying open and closed kinematic chains� The algo�
rithm achieves O�N� asymptotic complexity for serial
computation and O�logN� time complexity for paral�
lel computation on O�N� processors for most practical
kinematic chains� The basic procedure of the algo�
rithm is� starting from a collection of free��ying links�
to assemble the chain by adding joints one by one and
compute the constraint force at the new joint� Then�
since the constraint force computed at the assembly
phase does not include the e
ect of joints added after
the joint� we need the disassembly phase to compute
the constraint forces in the completed chain� where the

Fig��� The idea of the algorithm

joints are removed in the reverse order of the assembly�
The concept is illustrated in Fig���

Parallel computation is realized by utilizing the or�
der of assembly� During the assembly phase� if the
intermediate chains do not have connections between
each others� we can process the joint connection in
parallel� Increasing parallelism� however� simultane�
ously leads to increase of total computational cost� It
is therefore important to select appropriate assembly
schedule to optimize the algorithm to the number of
processors available�

Recent works on dynamics computation of kine�
matic chains include O�N� algorithms for serial
computation��	���	� O�logN� algorithms for paral�
lel computation ��	����	� and iterative approximation
algorithms���� �
	� Our method has three major ad�
vantages over previous ones�

�� Our method is based on a simple physical in�
tuition rather than complicated mathematical
devices��� �	� This fact eases the understanding
and implementation of the algorithm�

� The same algorithm can be used for serial and
parallel computations on any number of proces�
sors� The di
erence is only in the order of adding
and removing the joints in assembly and disas�
sembly phases� Therefore� we can easily cus�
tomize the algorithm for the available computa�
tional resource�

�� The algorithm gives an exact solution�

530

� Overview

The idea of the algorithm is illusrated in Fig��� The
free��ying links are assembled by adding a joint one by
one to form the target kinematic chain� and then dis�
assembled by removing the joints in the reverse order
to return to the initial state� We call the intermediate
kinematic chains found in the course of assembling as
subchains� The target kinematic chain may be assem�
bled in an arbitrary order� Therefore� if the subchains
do not have connections with each others� we can pro�
cess the assembly and disassembly computations in
parallel� In Fig��� for example� the two joints added
or removed in steps ��
� � and � can be processed in
parallel� Thus� although the kinematic chain contains
� joints� the total computation time would be almost
equivalent to handling � joints serially on one process�

Two quantities are computed in the assembly
phase� the constraint force at the new joint and the
acceleration of the points where new joints are to be
added in the future� Note that the joints to be added
in the future assembly steps are not considered at this
stage� This is why we need the disassembly phase
which computes the constraint forces in the target
chain� Once we have all constraint forces� the link
accelerations are easily computed by applying New�
ton and Euler equations of motion to each link� The
accelerations of two neighboring links are then used to
compute the acceleration of the joint between them�

The idea of assembling and disassembling links
is similar to Divide�and�Conquer Algorithm �DCA�
��� ��	 and Hybrid Direct�Iterative Algorithm���	� al�
though the involved computations are di
erent�

� Preliminaries and Notations

��� Notations

Variables related to link k

Mk � spatial inertial matrix �R����

ck � centrifugal� colliolis� gravitational forces �R��
��k � spacial velocity �R��

Jk � set of joints connected to link k

Variables related to joint i

NCi � number of constraint conditions

NFi � ��NCi� degrees of freedom

�qi � joint velocity �RNFi�

� i � joint torque �RNFi�

f i � constraint force �RNCi�

pi � number of the parent�side link

ci � number of the child�side link

Fig�
� Frames attached to joints and links

� i and f i are de�ned as the force and�or moment
applied to the link connected to the end�link side of
joint i� The other link receives �� i and �f i�

Variables related to subchain A

NLA � number of links

NJA � number of joints

NCA � total number of constraints

NFA � total number of DOF
��A � vector composed of ��k of all links �R�NLA�

cA � vector composed of ck of all links �R�NLA�

MA � block diagonal matrix composed of Mk

of all links �R�NLA��NLA�

�qA � vector composed of qk of all links �RNFA�

EA � set of external joints connecting subchain A

to other subchains

LA � set of links connected to joints in EA

��� Joint Constraints and Joint Variables

We attach several frames to each links and joints as
shown in Fig�
� where link ci is connected to link pi
towards the end link� One frame is attached to each
link whose spatial velocity is denoted by ��k as de�ned
in the previous subsection� For joint i connecting two
links pi and ci� we de�ne two frames each �xed to one
of the links� whose spatial velocities are denoted by
� �ri�pi � R� and �ri�ci � R� respectively� Note that
the direction of the velocity of link pi at joint i is
taken in the opposite direction to be consistent with
the de�nition of f i and � i�

We also give two matrices for each joint denoted by
KCi � RNCi�� and KJi � RNFi��� KCi is given
such that the constraint condition at joint i is ex�
pressed as

KCi� �ri�ci � �ri�pi� � O� ���

whileKJi is given such that the joint velocity of joint
i is expressed as

�qi �KJi� �ri�ci � �ri�pi�� �
�

531

We assume KCi and KJi are constant for simplicity�
which is the case for most practical joint types� al�
though it is straightforward to include time�dependent
KCi or KJi�

Using the above quantities� we de�ne the following
Jacobian matrices and their derivatives�

J i�k
�
�
�ri�k

��k
ji�k

�
� �J i�k ��k

Hi�k
�
�KCiJ i�k hi�k

�
�KCiji�k

HJi�k
�
�KJiJ i�k hJi�k

�
�KJiji�k�

��� Equation of Motion of a Subchain

Equation of motion of link k is described as

Mk
��k � ck �

X
m�Jk

�HT
m�kfm �HT

Jm�k�m�� ���

The acceleration of the frame attached to link k side
of joint i is computed by

�ri�k � J i�k��k � ji�k� ���

Using Eqs���� and ���� the constraint condition at
joint i connecting links pi and ci is described as

H i�ci
��ci �Hi�pi

��pi � hi�ci � hi�pi � O� ���

Combining Eq���� of all joints in subchain A yields

HA
��A � hA � O ���

where HA � RNCA��NLA is a block matrix in the
following form�

HA �

pi ci

i

�
BB�

���
���

� � � Hi�pi � � � Hi�ci � � �
���

���

�
CCA

���
and hA � RNCA is a vector in the following form�

hA � i

�
BB�

���
hi�ci � hi�pi

���

�
CCA � ���

Using HA� the global form of Eq���� is described as

MA
��A � cA �HT

AfA �HT
JA�A� ���

Eqs������� are solved in terms of fA as

fA � S��A ��HAM
��

A HT
JA�A �HAM

��

A cA � hA�
����

Fig��� Assembling two subchains

where

SA
�
�HAM

��

A HT
A� ����

Evaluating Eq����� directly� as in most commercial
softwares� leads to an O�N�� algorithm� while making
use of the sparsity of SA yields more e�cient O�N�
solution��	�

Since ��k� �ri�k and f i change as the assembly phase
proceeds� we denote the subchain when the value was
computed by left�upper indices� Absence of the index
means that the value is for the complete chain�

� Details

��� Assembly Phase

Suppose we are going to assemble subchains A and
B by connecting links pi and ci through joint i to build
subchain C as illustrated in Fig���

Before adding joint i� the equations of motion and
kinematic constraints of subchain X �X � A�B� are

MX
X ��X � cX � HT

X
XfX �HT

JX�X ��
�

HX
X ��X � hX � O� ����

A�ri�A and B�ri�B are computed by

A�ri�A � J i�A
A��A � ji�A ����

B�ri�B � J i�B
B��B � ji�B � ����

where �ri�A and �ri�B denote the linear and angular ac�
celerations of the frames of the subchain A and B

side of joint i respectively� The Jacobian matrices
J i�A � R���NLA and J i�B � R���NLB are written
in the following forms�

J i�A �
�
O � � � J i�pi � � � O

�
����

J i�B �
�
O � � � J i�ci � � � O

�
� ����

From Eqs���
������ the constraint forces of sub�
chain A are computed by

AfA � S��A ��KCATAK
T
JA�A �HAM

��

A cA � hA�
����

532

where

SA
�
� HAM

��

A HT
A ����

TA
�
� JAM

��
A JTA� �
��

Similarly for subchain B� BfB is computed by

BfB � S��B ��KCBT
T
BK

T
JB�B �HBM

��

B cB � hB�
�
��

where SB and TB are de�ned in the same way�
When we connect subchains A and B through joint

i� we have the equations of motion

MA
C��A � cA � HT

A
CfA �HT

JA�A

�HT
i�A

Cf i �HT
Ji�A� i �

�

MB
C��B � cB � HT

B
CfB �HT

JB�B

�HT
i�B

Cf i �HT
Ji�B� i �
��

and constraint conditions

HA
C��A � hA � O �
��

HB
C��B � hB � O �
��

H i�A
C��A � hi�A �Hi�B

C��B � hi�B � O �
��

where Hi�A
�
�KCiJ i�A and Hi�B

�
�KCiJ i�B � Com�

bining Eqs��

��
�� and Eqs��
����
��� we obtain

MC
C��C � cC � HT

C
CfC �HT

JC�C �
��

HC
C��C � hC � O �
��

where

MC
�
�

�
MA O

O MB

�
�
��

C��C
�
�

�
C��A
C��B

�
����

cC
�
�

�
cA
cB

�
����

CfC
�
�

�
�

CfA
CfB
Cf i

�
A ��
�

�C
�
�

�
� �A
�B
� i

�
A ����

HC
�
�

�
� HA O

O HB

Hi�A Hi�B

�
A ����

hC
�
�

�
� hA

hB
hi�A � hi�B

�
A ����

Solving Eqs��

���
�� in terms of Cf i and simpli�
fying it using Eqs��������������
�� yields

Cf i � ����i�iKCi�
A�ri�A � B�ri�B � P i�iK

T
Ji� i� ����

where

�i�i � KCiP i�iK
T
Ci

P i�i � �Ai�i ��Bi�i

�Xi�i � J i�X�XJ
T
i�X

�X � M��
X �M��

X HT
XS

��
X HXM

��
X

SX � HXM
��
X HT

X �

Since ��ri� and ��i�i�� � A�B� of the subchains
are required to compute Cf i� we have to compute
C�rk�C �k � EC� and �Cj�j for the coming assembly
computations� where j is the joint going to be added
next� First� using the relationship

�rk�C � Jk�C��C � jk�C � ����

C�rk�C is computed by

C�rk�C � X�rk�X ��Xk�i�K
T
Ci
Cf i �KT

Ji� i� ����

where �Xk�i � Jk�X�XJ
T
i�X and X � fA�Bg is se�

lected so that k is also included in EX �
Next� we compute �Cm�j�m � EC� which includes

all of the �C matrices required for the next assembly�
Now we have

�Cm�j � Jm�C�CJ
T
j�C ����

�C � M��

C �M��

C HT
CS

��

C HCM
��

C ����

SC � HCM
��

C HT
C � ����

We �rst yield a simpli�ed expression of �C � Using
Eqs������
�� and ����� SC is written as

SC �

�
� SA O SAi

O SB SBi
STAi STBi Sii

�
A ��
�

where

SAi
�
� HAM

��

A HT
i�A

SBi
�
� �HBM

��
B HT

i�B

Sii
�
� H i�AM

��

A HT
i�A �Hi�BM

��

B HT
i�B �

which yields

S��C �

�
� SCAA SCAB SCAi
STCAB SCBB SCBi
STCAi STCBi SCii

�
A ����

533

where

SCAA � S��A � S��A SAi�
��
i�i S

T
AiS

��

A

SCAB � S��A SAi�
��
i�i S

T
BiS

��

B

SCAi � �S��A SAi�
��
i�i

SCBB � S��B � S��B SBi�
��
i�i S

T
BiS

��

B

SCBi � �S��B SBi�
��
i�i

SCii � ���i�i �

Substituting Eq����� into Eq����� and simplifying it
using �A and �B � we obtain

�C �

�
�CAA �CAB

�T
CAB �CBB

�
����

where

�CAA � �A ��AH
T
i�A�

��
i�iH i�A�A ����

�CAB � ��AH
T
i�A�

��
i�iH i�B�B ����

�CBB � �B ��BH
T
i�B�

��
i�iH i�B�B � ����

Computing all elements of�C requires O�N�� com�
putations� Our �nal goal is� however� to evaluate
�Cm�j that requires only selected blocks of �C be�
cause of the sparsity of Jm�C �

Jm�C �
�
O � � � Jm�pm � � � O

�
����

where pm � LC is the link in subchain C that is
connected to joint m� We only need to compute the
�pm� pj��elements of �C since �Cm�j is computed by

�Cm�j � Jm�pm�Cpm�pjJj�pj � ����

m and j may be in either subchain A or subchain
B� In case m � EA and j � EA� for example� we use
the upper�left block of Eq������

�Cm�j � Jm�pm��A ��AH
T
i�A�

��
i�iHi�A�A�J j�pj

� Jm�pm�AJ j�pj

�Jm�pm�AJ
T
i�AK

T
i �

��
i�iKiJ i�A�AJ j�pj

� �Am�j ��Am�iK
T
i �

��
i�iKi�Ai�j ����

which only uses the quantities computed in the assem�
bly process for constructing subchain A� Other cases
are also handled in similar ways�

Computations for assembling subchain C through
joint i consist of folowing four steps�

�� compute P i�i and �
��
i�i �

� compute Cf i�

�� compute �Cm�n �m�n � EC�� and

�� compute C�rm�C �m � EC��

��� Disassembly Phase

The constraint forces computed in the assembly
phase are valid only in the corresponding subchains�
After the completion of the assembly phase� the val�
ues might have changed due to the e
ects of joints
added afterward� The disassembly phase computes
the constraint forces in the completed chain by dis�
assembling the subchains in the reverse order of the
assembly phase� When a joint is removed� its �nal
constraint force is computed� which in turn can be
regarded as an external force for the two subchains
which the joint had connected�

Suppose we are about to remove joint i� Joints in
EC were assembled after joint i� therefore� they are
removed before joint i in the disassembly phase and
we already know the �nal constraint forces of joint
k � EC � denoted by fk�

Regarding fk �k � EC� as external forces� we have
the new equations of motions for subchains A and B�

MA
��A � cA � HT

i�Af i �HT
AfA

�HT
Ji�A� i �HT

JA�A

�
X
k�EA

�HT
k�Afk �HT

Jk�A� k�

MB
��B � cB � HT

i�Bf i �HT
BfB

�HT
Ji�B� i �HT

JB�B

�
X
k�EB

�HT
k�Bfk �HT

Jk�B� k�

and the equations of constraints�

HA
��A � hA � O

HB
��B � hB � O

Hi�A
��A � hi�A � Hi�B

��B � hi�B

where the unknowns are f i�fA�fB �
��A and ��B � Solv�

ing these equations in terms of f i� the �nal constraint
force is computed by

f i �
Cf i � ���i�iKCi

X
�T
Xk�i�K

T
Ckfk �KT

Jk� k��

����
Once the constraint force is computed� the accelera�
tions of the both sides of the joint are computed by

�ri�X � X�ri�X ��Xi�i�K
T
Cif i �KT

Ji� i�

�
X

�T
Xk�i�K

T
Ckfk �KT

Jk� k� ��
�

where X � A�B� Finally� the joint acceleration is
computed by

�qi �KJi��ri�B � �ri�A�� ����

All the quantities except for fk �k � EC� used to com�
pute �qi are already computed in the assembly phase�

534

��� Closed Kinematic Chains

We have two options to assemble a closed kinematic
chain in our algorithm� ��� add a joint to connect
two links in the same subchain� or �
� add multi�
ple joints simultaneously to connect two di
erent sub�
chains� Since the latter approach is a straightforward
extension of the method described above� we present
the equations for the former approach�

Suppose we are going to add joint i to connect links
m and n� both in subchain A� and construct subchain
C� The equations of motion and constraint of sub�
chain A are exactly the same as Eqs���
������ After
adding joint i� we have the following equations�

MA
C��A � cA � HT

i�A
Cf i �HT

Ji�A� i

�HT
A
CfA �HT

JA�A ����

H i�A
C��A � hi�A � O ����

where Hi�A
�
� KCiJ i�A and J i�A has the following

form�

J i�A �
�
� � � J i�m � � � J i�n � � �

�
� ����

Solving Eqs��������� yields a result similar to
Eq������

Cf i � ���i�iKCi�
A�ri�n � A�ri�m �P i�iK

T
Ji� i� ����

where

�i�i � KCiP i�iK
T
Ci ����

P i�i � �Ai�i ����

�Ai�i � J i�A�AJ
T
i�A ����

�A � M��
A �M��

A HT
AS

��
A HAM

��
A ����

SA � HAM
��
A HT

A� ��
�

In closed kinematic chains� the invertibility of �i�i is
not guranteed� A singular �i�i indicates indeterminate
constraint forces or inconsistent constraints�

��� Complexity

As is obvious from the algorithm described in this
section� the complexity of the algorithm depends on
the number of elements in E of each subchain� This
relationship is similar to that of the number of han�
dles in DCA and its complexity���	� In ���	� detailed
discussion is made on reducing the number of handles
and balancing the assembly tree� The conclusions of
the discussion are summarized by the following points�

� The branching factor of the kinematic tree is lim�
ited up to three by link splitting�

Fig��� A schedule for an ��link serial chain

Fig��� Another possible schedule

� Therefore� it is possible to limit the number of
handles to three�

� Although there exist cases where the number of
handles grow in�nitely when we try to obtain a
balanced tree� we have several options to maintain
O�logN� time complexity�

From these points� we can conclude that our algo�
rithm also maintains O�N� and O�logN� asymtotic
complexity for serial and parallel computation respec�
tively for most practical kinematic chains�

� Parallel Computation

��� Scheduling

The method described in the previous section as�
sumes nothing about the order of adding and remov�
ing joints in assembly and disassemly phases� In fact�
the parallelism and total computational cost are de�
termined by the scheduling� If we try to increase the
parallelism� the total computational cost grows up and
vise versa� therefore� it is less e�cient to apply a sched�
ule intended for larger number of processes than avail�
able� One of the advantages of our approach is that
we can customize the parallelism and the total com�
putational cost only by changing the schedule�

Figures � and � show two possible schedules for
assembling an ��link serial chain� It is obvious that
the former one has higher parallelism� since it allows
four processes to run in parallel at the �rst step and
requires only three steps in total� The latter one� on
the other hand� allows only two parallel processes and
requires four steps in total� Therefore� if we have more
than four processors� it is better to apply the former

535

Fig��� Di
erent schedules for a kinematic chain

schedule� Its total computational cost� however� is
worse than the latter� Therefore� if we don�t have that
many processors� it is better to use the latter order�

The issue here is how to determine the schedule
of the assembly and disassembly phases that makes
the best use of the available processors� We show an
intuitive strategy to obtain the optimal scheduling for
a given kinematic chain and the number of processors�
It is di�cult to give an algorithmic strategy for general
cases and would be included in future works�

A schedule can be expressed by a binary tree like
�a���c� in Fig��� which represent di
erent schedules
for the kinematic chain in the left�hand side of Fig���
Each node represents a subchain and labeled by the
number of the last joint added to assemble the sub�
chain� Two edges starting from a node point the two
subchains connected by the joint� Null�pointing edges
mean that the corresponding subchain consists of a
single link�

A binary tree gives an intuitive idea of the par�
allelism and e�ciency of the schedule� the number
of leaf nodes indicates the parallelism� and the depth
is nearly proportional to the computation time when
there exists more processors than the number of the
leaf nodes� Two strategies are derived from these facts�

�� the number of leaf nodes should be close to the
number of the processors� and

� the depth of leaf nodes should be even�

��� Communication

Suppose subchains A and C in Fig�� are processed
in di
erent processes pa and pc� The following values
should be passed between the two processes�

�� In assembly phase� send the following data from
pa to pc�

�a� �Am�i�m � EA�

�b� A�rm�A�m � EA�

�c� required blocks of S��A �

� In disassembly phase� send f i from pc to pa�

Table �� Computation time for serial chains �ms	
links � �� �

� procs ����
��� ����

 procs ����� ���� ����
� procs ����� ���� ����
� procs � ����
���
� procs � ���� ����

Table
� Computation time for human �gures �ms	
DOF �� ��
� procs ���� ����

 procs
���
���
� procs
�

���

� Simulation Examples

The presented algorithm was implemented on a
cluster of � workstations with PentiumIII �GHz pro�
cessor� The nodes are connected by Myrinet and have
parallel computation environment SCore���	 installed�

��� Computation Time

Table � shows the computation time for serial kine�
matic chains of � to �
 links connected by �DOF spher�
ical joints� The links are distributed to all processes
evenly� except for the last case �marked in the ta�
ble�� where we used � processes but the numbers of
links assigned to them are not even� When a serial
chain is divided into � subchains processed by � pro�
cesses� the middle two subchains have two joints in
E � while those at the end have only one� Therefore�
the computational costs of the processes handling the
middle two subchains are slightly larger than the other
two even if the numbers of the assigned links are the
same� In the last case we moved one link each from
the middle subchains to the other two and tried to
make the computational costs� rather than the num�
ber of links� of the processes even� As a result� the
computation time was reduced greatly from the case
of � processes each with the same number of links�

Table
 shows the computation time for free��ying
human �gures of �� and ��DOF on � to � processes�

��� Dynamics Simulation of Human Fig�
ures

Figure � shows snapshots from dynamics simula�
tion of a human �gure including structure changes�
The �gure initially held the environment by the both
hands� and then released the right and left hands� The
computation time in serial computation varies from
��� to ����ms	 depending on the number of connections
between the hands and the environment�

536

Fig��� Dynamics simulation of structure�varying kinematic chain

� Conclusion

We conclude this paper by emphasizing the follow�
ing three points�

� An e�cient parallel algorithm for forward dynam�
ics of human �gures was developed and imple�
mented� Its asymptotic complexity is O�N� for
serial computation and O�logN� for parallel com�
putation on O�N� processors for most practical
kinematic chains�

� The parallelism and total computational cost are
customized for parallel computation on any num�
ber of processors only by optimizing the schedul�
ing of assemly and disassembly phases� A novelty
of this algorithm is in the fact that there are no
algorithmic di
erences in serial and parallel com�
putation� This enables us to use the same pro�
gram on any systems from a single PC system to
a system of large PC cluster�

� Simulation results showed that the computation
time is e
ectively reduced by parallel computa�
tion� Forward dynamics computation of ��DOF
human �gure takes less than
��ms on four pro�
cessors�

The �rst author acknowledges the support by the
Japan Society for the Promotion of Science� This re�
search was supported by CREST program� the Japan
Science and Technology Corporation�

References

��� Y� Nakamura and K� Yamane� �Dynamics Computa�
tion of Structure�Varying Kinematic Chains and Its
Application to Human Figures�� IEEE Transactions

on Robotics and Automation� vol��	� no�
� pp��
��
�
��
����

�
� Y� Nakamura� H� Hirukawa� and K� Yamane et al��
�Humanoid Robot Simulator for the METI HRP
Project�� Robotics and Autonomous Systems� vol�
��
pp���������
����

�
� R� Featherstone� Robot Dynamics Algorithm� Kluwer
Academic Publishers� Boston� MA� �����

��� D�S� Bae and E�J� Haug� �A Recursive Formulation
for Constrained Mechanical System Dynamics� PartI�
Open Loop Systems�� Mechanics of Structures and

Machines� vol���� no�
� pp�
���
�
� �����

��� D�S� Bae and E�J� Haug� �A Recursive Formulation
for Constrained Mechanical System Dynamics� Par�
tII� Closed Loop Systems�� Mechanics of Structures

and Machines� vol���� no��� pp�������	� ��������

�	� D�E� Rosenthal� �An Order n Formulation for
Robotic Systems�� The Journal of the Astronautical

Sciences� vol�
�� no��� pp������
�� �����

��� David Bara�� �Linear�Time Dynamics Using La�
grange Multipliers�� In Proceedings of SIGGRAPH�
pp��
����	� ���	�

��� A� Fijany� I� Sharf� and G�M�T� D�Eleuterio� �Parallel
O�logN� Algorithms for Computation of Manipulator
Forward Dynamics�� IEEE Transactions on Robotics

and Automation� vol���� no�
� pp�
������� �����

��� R� Featherstone� �A Divide�and�Conquer
Articulated�Body Algorithm for Parallel O�log�n��
Calculation of Rigid�Body Dynamics� Part�� Basic
Algorithm�� International Journal of Robotics

Research� vol���� no��� pp��	������ �����

���� R� Featherstone� �A Divide�and�Conquer
Articulated�Body Algorithm for Parallel O�log�n��
Calculation of Rigid�Body Dynamics� Part
� Trees�
Loops� and Accuracy�� International Journal of

Robotics Research� vol���� no��� pp���	���
� �����

���� K�S� Anderson and S� Duan� �Highly Paralleliz�
able Low�Order Dynamics Simulation Algorithm for
Multi�Rigid�Body Systems�� AIAA Journal on Guid�

ance� Control and Dynamics� vol�

� no�
� pp�
���

	��
����

��
� F� Faure� �Fast Iterative Re�nement of Articulated
Solid Dynamics�� IEEE Transactions on Visualiza�

tion and Computer Graphics� vol��� no�
� pp�
	��
�	�
�����

��
� Parallel and Distributed System Software Laboratory�
SCore� http���pdswww�rwcp�or�jp�home�html�
����

537

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header:
	footer:

