0-7803-6475-9/01/$10.000 2001 IEEE

Proceedings of the 2001 IEEE

International Conference on Robotics & Automation

Seoul, Korea ¢ May 21-26, 2001

O(N) Forward Dynamics Computation of Open Kinematic Chains
Based on the Principle of Virtual Work

Katsu YAMANE*!*2
(E-mail: katz@ynl.t.u-tokyo.ac.jp)

Yoshihiko NAKAMURA**3

(E-mail: nakamura@ynl.t.u-tokyo.ac.jp)

*1 Department of Mechano-Informatics, University of Tokyo
7-3-1 Hongo Bunkyo-ku Tokyo, 113-8656 JAPAN
*2Research Fellow of the Japan Society for the Promotion of Science
*3CREST, Japan Science and Technology Corporation

Abstract

This paper describes an efficient algorithm for the
forward dynamics of open kinematic chains with O(N)
complexity, where N is the number of links in the
chain. The method is based on the Principle of Vir-
tual Work and does not use any theory in linear alge-
bra or the concept of Articulated Body Inertia. The
idea of this method is to add a link one by one from the
leaf links to the root evaluating the constraint force at
each new joint. The algorithm consists of two iterative
procedures: from the leaf links to the root to compute
the constraint forces, and from the root to the leaf to
compute the joint accelerations. Some numerical ex-
amples show the efficiency of the proposed algorithm.
Similarity and differences with other O(N) algorithms
are also discussed.

Key Words: Forward Dynamics, Open Kinematic
Chains, O(N) Complexity, Principle of Virtual Work.

1 Introduction

Forward dynamics computation of kinematic chains
has a wide range of applications and therefore many
research have been made in this area. The most basic
and conventional methods have O(N?) or O(N?) com-
plexities where N is the number of link in the chain,
due to the explicit computation of inverse of the iner-
tial matrix[1, 2]. These methods may be enough for
simple kinematic chains with relatively small N, but
obviously not for complex systems such as humanoid
robots because the computation time grows too fast
along with the increase of N.

For such applications, a forward dynamics algo-
rithm should have O(N) complexity, i.e. the amount
of computation increases linearly to N. The first
practical algorithm to achieve this complexity is
the Articulated Body Algorithm (ABA) proposed by
Featherstone[3]. ABA uses the concept of Articulated
Body Inertia (ABI), which relates the acceleration of
a body in the chain (called handle) with the force ap-

2824

plied to it (test force). The key point of ABA is that
ABI is computed by a recursive computation starting
from the leaf links and ending at the root link, and
that the size of ABI is constant for any N.

Other methods with O(N) complexity but without
ABI include Constraint Force Algorithm (CFA) by
Fijany et al.[4] and Baraff’s method using Lagrange
multipliers[5]. Orginal version of CFA is applicable
only to unbranched serial chains, but Featherstone and
Fijany[6] extended it to allow short branches by par-
tially using ABI. These methods make use of advanced
theories in linear algebra to solve the equation of mo-
tion efficiently.

In this paper, we propose a new method for the for-
ward dynamics computation of open kinematic chains
based on the Principle of Virtual Work which we have
employed in [7] to compute the dynamics of structure-
varying kinematic chains. The O(N) complexity of the
method presented in this paper is realized by the effi-
cient evaluation of the equation of motion derived on
the basis of the Principle of Virtual Work, instead of
linear algebra theories or the concept of ABI.

The rest of this paper is organized as follows. In sec-
tion 2, we present the basic equations of motion based
on the Priciple of Virtual Work. We then derive the
O(N) forward dynamics algorithm for unbranched se-
rial chains in section 3, which is extended to branched
open kinematic chains in section 4. In section 5 we
present several numerical examples that demonstrate
the efficiency of the proposed algorithm. Discussions
on the relationship between our algorithm and other
several ones are given in section 6, followed by the
concluding remarks.

2 Dynamics of Kinematic Chain Using
the Principle of Virtual Work

The basis of the method proposed in this paper is
the dynamics computation of closed kinematic chains
originally proposed by Nakamura and Ghodoussi[8].
Practically the original method was only applicable

gk

Figure 1: A closed kinematic chain (left) and its cor-
responding virtual open kinematic chain (right)

to planar or simple closed kinematic chains, however
the restriction was then removed to handle general
closed kinematic chains by Nakamura and Yamane[7].
These methods first virtually cut some joints to get
open kinematic chains, and then use the Principle of
Virtual Work to compute the constraint forces at the
cut joints. The outline is given in this section.

Consider a closed kinematic chain shown in the left-
hand side of Fig.1. The closed loop is cut at a joint and
a virtual open kinematic chain is generated as shown
in the right-hand side. The frame formerly attached to
the cut joint is now split into a pair of frames attached
to two links at the both sides of the cut joint, subject
to some constraint conditions.

The dynamics of the closed kinematic chain is de-
scribed as

Tg =Adg+b (1)

where g, € RM¢ is the generalized coordinates, A €
RNe*NG the inertial matrix, b € R™¢ the velocity
dependent forces, 7 € RN¢ the generalized forces
applied to on the chain, and N¢ the degrees of freedom
(DOF) of the chain. There are two typical ways to
select g: use position and orientation of all links|[2, 5],
or joint angles[1, 7]. The latter is efficient in the sense
that the number of unknowns to solve becomes much
smaller than the former. The advantage of the former
approach is, on the other hand, that the mass matrix
A and the constraint matrix (described later) tend to
be sparse. Some methods make use of this fact to
derive efficient solutions[5].

In the actual closed kinematic chain, constraint
forces/torques are applied to maintain the constraint
condition. Suppose Njq0p closed loops are cut at Nigop
joints and let 7 € R%Meer denote the spatial relative
velocities of all pairs of frames at the cut joints. The
constraint conditions are expressed as

Kic=0 (2)

where K € RN¢*®Nieer g the constraint matrix and
Nc < 6Nj0p is the total number of constraints. In

the following discussion we treat K as a constant ma-
trix, which is often the for with normal types of joints,
although it is not difficult to handle time-varying con-
straint matrices such as those for nonholonomic con-
straints.

Next we define H -, the Jacobian matrix of r¢ with
respect to the generalized coordinates, as

Ho27C 3)

Using H ¢, the constraint equation Eq.(2) is rewritten
as
Hqz =0 (4)

where H £ KH ¢. Differentiating Eq.(4) yields the
relationship of acceleration:

Hgg + Hqg = O. (5)

On the other hand, the generalized force applied to
the system can be compute by applying the Principle
of Virtual Work to Eq.(4) as

re=1mw+H 7o (6)

where 7y € RS includes the effects of joint
forces/torques and external forces to the generalized
force and 7¢ is the constraint force.

Combining Eqgs.(1)(5)(6) yields the following equa-

tion:
(76)(%)=(Tr) o

by which we can compute the two unknowns, the gen-
eralized acclerations ¢, and the constraint forces 7¢.
However, explicitly solving Eq.(7) requires O(N +
NZ) computations which is not acceptable when Ng
is very large.

3 O(N) Algorithm for Serial Chains

In this section we describe the new O(N) for-
ward dynamics algorithm for unbranched serial chains.
General open kinematic chains with branches are han-
dled in the next section.

The basic approach here is to add links one by one,
starting from a single independent link, and see the
amount of computations we need to evaluate the effect
of the new joint using the Principle of Virtual Work.
If it is independent of the number of links already we
have, then the total asymptotic complexity becomes

O(N).

2825

AR Sy

Figure 2: A serial chain with N + 1 links and N joints

3.1 Notations

Consider a serial kinematic chain shown in Fig.2
which consists of N + 1 links numbered 0 to N con-
nected by N joints numbered 1 to N.

We define the following variables for link k:

Aj, € R%*¢ spatial inertial matrix
by € RS velocity dependent forces
fr € R® external spacial forces
0, € R" spacial velocity.

The numbering rule lets joint m connect links m —1
and m. We define the following variables for joint m:

Fem € RE spatial relative velocity of

links m and m — 1 at joint m

A Orc
Hey, € RNom>6 = gm ¢ RSk =m —1,m)
00y,
6—Ncm ..
ngm € R joint torque
n, € RNom constraint force
Nem number of constraint condition.

H ¢, 1 is the Jacobian matrix of the relative velocity
of links m and m — 1 with respect to the velocity of
link %k, which is non-zero only for £ = m,m — 1. Using
Hcopm and Hop m—1, Tom is computed by

".‘Cm = HCm,mém - HCm,m—lém—l' (8)

Let the constraint conditions at joint m be ex-
pressed in the following form:

Kt cm = O (9)

where K, is an Ng,, X 6 matrix. Similarly, let the
joint velocity ¢, € RS~Nem e expressed in the fol-
lowing form:

where K j,, is a (6 — Ngy,) X 6 matrix with the fol-
lowing property:

K.KT =0. (11)

Differentiating Eq.(8) yields the relationship of rel-
ative acceleration:

'F'Cm = HCm7m0m - HCm7m—1ém—1
+ HCm7m9m - HC’m7m—19m—1~(12)
Using Eq.(9) and (12) we get the acceleration con-
straint as follows:
Hm,mém - Hm,m—lém—l
+H,, 0, —Hpo 16,1, = O (13)

where H ,, 1, 2 K, Hcp i, (k=m,m —1). Similarly,
relationship of joint accelerations is expressed as:

HJm,mem - HJm,m—lém—l
+ HJm,mém - HJm,m—lém—l (14)

i =

where H jp, 2 KimHcomy (k=m,m—1).

Since link accelerations, constraint forces and joint
accelerations change as the number of links increases,
we must specify at which stage the value was com-
puted. In the following discussions, we let the left-
upper index indicate the number of links involved
when the value was computed. For example, ‘n;(i >
j) denotes the constraint force at joint j when we had
joints 1 to .

3.2 Basic Equations

First consider the case we only have links 0 to ¢
connected by constraints 1 to i. Link k is subject
to joint and constraint forces at joints k and k — 1,
therefore its equation of motion is derived from the
Priciple of Virtual Work as:

AOy+be = fi+Hyng - Hy moen
with the exceptions of links 1 to 4 — 1, whose equations
of motion are written as:

Agby+by =
AZGZ +b;, =

fo _H§1,1nJ1 —Hir,linl (16)
fi+H nyi+Hl 'n;. (17)
Combining Eqs.(15)—(17) of links 0 to 4 and

Eqgs.(13)(14) of joints 1 to ¢ yields the equations in
global form:

A'®; = T;+T]'N; (18)
I‘,‘ié,‘ = ")’i (19)
Q. = T'0;—~y, (20)

where generated at joints in order to maintain the constraint.
*N;, on the other hand, is the constraint forces that

A . i i
A, = diag(Ap) (k=0,1,...,4) € RO(H1)*6(i+1) should be exerted at joints to maintain the constraint
e A iaT T inT T 6(i+1) condition. The matrix ®; can therefore be considered
® = (0y "0, 0;) €R as a kind of intertial matrix.
B, A (b7 b7 o7)T c RSG+D Now we are ret?mdy to add.hnk t+1 via Jomt' Uns
¢ 1. The new equations of motion, constraint and joint
F,; = (fg f”f f;rr)T e RSG+D accelerations are:
iN, & (nf mf ... ‘nl)T c R'Ne A O e,
A ' T . (0 AH—I i+1 0i+1
Ny = (nf, nf, ... nf) eR" Ne T T i1
L | R TEN;
iy 2 isT 3.7 T T 6i—' N¢: = o HT ’ i+l
Q = q, 9 ... q; €R i+1,i+1 i+1
T;
T, £ F,+T7N;-B; + < b > (23)
A . .
. 2 1,0, o
T . o O\ ([,
Yri = —Tyi0; Fit1i Hiviin 001)\ hin
. A < (24)
ZNC = Z NCm . .
m=1 H_lQi
i+lé,
and diag(A;) denotes a block diagonal matrix whose o .
; i iNex6(i+1) - . Ty Io) i+16).
i-th entry is A;, and T'; € R ¢ is a matrix = (v > (1A v >
written as Lyiv1i Hyiy1im 01
—H170 H171 o o - (h’y'” > (25)
_ Jit+1
;= % —Hyy Hyp where
: ‘. . ‘. . .. 0 A
O .. O _Hi7i—1 Hiﬂ' Fi—i—l,i = (O - O _Hi—i-l,i) (26)
A
T';; has the same structure as I'; except that Tjivii = (O .. O —Hyipy) (20)
H,, ;(m = 1,2,...,4; k = m,m — 1) are replaced tin 2 fint +H§i+1,i+ani+1 — by (28)
by H jm k- » A . . .
Solving Eq.(18) in terms of ‘@, and substituting it hiyi = Hip1,i0i — Hit1,i110i (29)
M . A
into Eq.(19) yields hripi = Hyip1,0; — Hjip1410i11. (30)
PN = ai (21) Solving Eq.(23) in terms of (i+1éiT i+1éf+1)T and
where substituting into Eq.(24) yields
® 2 TA;'TT (LI SEP) (WL) - (a;)
N P Sita i i1
a;i = v, —-T,AT'T,. (31)
) where
If ®; is non-singular, then the constraint force *IN; A
can be computed by q)i—i-l,i = Fi+1,iA;1F? (32)
. A _ _
'N; = @flai (22) Sit1 = Hip A, 1HiT+1,i + Hi+1,i+1Ai+11HiT+1,i+1
2 . L -1y
which is not actually executed here because it requires aiv1 = hip — Hipin A tin

as much as O(NZ,) computations.
The physical meaning of Egs.(21)(22) is explained '
as follows. a; denotes the accelerations that should be <I>,-+1’+1Ni+1 =41 (33)

or in global form,

2827

where

N &, oL .
) = 1 1+1,2
Bir1 < P11 St) (34)

Using the upper part of Eq.(31) and the relation-
ship of Eq.(22), we get
i-‘r].Ni — @i—l(ai _ §?+1,ii+1ni+l)

= 'Ni-®7'®[, Hnig. (35)

Substituting this equation into the lower part of
Eq.(31) yeilds

Hlpiy = Mi(aiy — ®40'N)) (36)
A _ _
M1 = (Sip1— @i, @7 @0,)7 (37)

2

by which we can recursively compute “*1m; 1, the con-
straint force at the new joint ¢ + 1. However, a careful
look at Eqs.(36)(37) shows that the amount of compu-
tation required for evaluating both equations increases
as the number of links involved increases. We need
more investigation into Eqs.(36)(37) in order to de-
rive O(N) algorithm.

3.3 Derivation of O(N) Algorithm
Reduction of computation is realized by making use

of the structure of I';4+1,; shown in Eq.(26). Using
Eq.(26), Eq.(32) can be rewritten as

D1 Tiy1,A;'T]
= (0 O —-H;;)
ATl
—1
A, 7
A7l
= (0o O -H; ;A7 T}
e O Sii) (38)
where
Sit1,i 2 —Hi+1,iAi_1H3:i. (39)

Substituting Eq.(38) into Eq.(36) and Eq.(37) yields

i = Mig(ais — Siy1i'ng) (40)
My = (Sig1—Sip1'Mi ;S ;)" (41)

respectively, where ‘M ; denotes the (i,4)-th block of
L

Eq.(40) shows that we can compute “t'n; ; recur-
sively from ‘n; with a bounded amount of computa-
tion for any ¢ provided that we have M ;1. If we write

<I>ij:1 in a block form as
-1 Q0 Qi
Pi = < Qi1 Qip (42)

it is readily shown from Eq.(34) that each block can
be written as follows:

Qo= @7+ M P @
Q;it1 —'I’i_l'l)iTJrl,iM“rl
Qi-i-l’i _Mi—i-lq)i-i-l,iq)i_l
Qi+1 = Mi—i—l- (43)

Replacing 7 + 1 with ¢ shows that the (¢,7)-th block
of & 1'is M;. Therefore, the computational cost for
computing M ;1 from M is also bounded for any i.

Executing the above procedure from link 0 to N, we
finally get ‘n; and M for i = 1...N. Note that the
constraint forces already computed are ‘n;, not the
desired Vn;, which means that we need another step
to compute the constraint forces for the completed
chain. This is done by a recursive procedure from link
N back to link 0 as follows.

After adding the last link N, we have the following
equation corresponding to Eq.(33):

SNV Ny = an. (44)

If we divide this equation into three parts, joints 1 to
i — 1, joint ¢, and joints ¢ + 1 to N, we get

P, <I>3:i_1 o NN, ;g

®,,_1 S @%,i Nn,; = a;
0 q)N,i @5\—}_1 NN?{}_I Oéx,fl
(45)

Provided that we have Vn;, the final constraint force
at joint i, we can compute Y IN,;_; by

Nioi = @ (e — @], "ny)

iyi—1

AN - @ el Nn, (46)

3,0—1

Extracting the (i—1)-th block of Eq.(46) using Eq.(38)
we get

N i1 T N
ni—1="mi—1 —M;15;,_"n; (47)

which shows that we can compute ¥n;_; from Vn;
recursively.

Finally we compute the joint accelerations ¥ Q N-
Replacing ¢ with N in Egs.(18)(20) gives

ANYONy = Ty +TEVNy (48)
NQN = I‘JNN@N_'YJN (49)

2828

respectively. Solving Eq.(48) in terms of Y@y and
substituting into Eq.(49) yields

NQy =®;8 Ny —ayn (50)
where
&,y = I NvAGTY
ajN = ')’N—I‘JNA]_VlTN. (51)

which can be divided into three parts, joints 1 to ¢ —1,
joint ¢, and joints ¢ + 1 to IV as

N @ T
]?i—l Pyi1 'I>,]i,i_1 o
: B T
q’i1 = ®sii1 Sui ‘I’JNiz'
. ,
NQy O v Py
NNy Qi1
N
n; - aj; |(52)
N i+l i+1
Ny ayN

Picking up the row corresponding to joint i, we get

N N N
q; = Syii-1 i1 +8y N+

S§i+1,iNni+1 —ajy; (53)
by which we can compute the joint accelerations.
To summarize, the proposed algorithm consists of

two recursive paths to compute the constraint force
and joint accelerations:

1. from link 0 to N to compute ‘n; and M;, and

2. from link N to 0 to compute Vn; and V.

4 O(N) Branched

Chains

Algorithm for

The method described in the previous section is ex-
tended to branched open kinematic chains by simply
modifying the two paths as follows:

1. Path 1: from end links to the root link
2. Path 2: from the root link to end links

The only difference from the serial chain version is that
we have more non-zero blocks in ®;;; than we had
in Eq.(38) on which the O(N) complexity of the al-
gorithm relies. In fact, the asymptotic complexity be-
comes O(N?) in the worst case if we treat a branched
kinematic chain in its original form. The topics of
this section is how to achieve the O(N) complexity
for general open kinematic chains.

fixed joints

Figure 3: Split a link so that each link has no more
than three connections between other links

Generally speaking, S, n, the (m,n)-th block ma-
trix of ®;, becomes nonzero if joints m and n a connect
common link. In serial chains ®,; ; has only one non-
zero block since joint i + 1 is attached to link to which
only two joints ¢ and ¢ + 1 are attached. In general
open kinematic chains, on the other hand, ®;;; ; may
contain any number of non-zero blocks requiring more
blocks of ®; to evaluate M ; ;. If joint {41 is attached
to a link with other n; joints attached, then we need
O(n}) computation to get M, 1. In the worst case of
N = ny, the overall asymptotic complexity falls down
to O(N?)

In order to maintain the O(N) complexity for
branched chains, we have to limit the number of non-
zero block matrices in @, ;. This is achieved by split-
ting links with more than 3 joints as shown in Fig.3.
In general, the number of joints attached to each link
can be limited to 3 by splitting a link with n joints
into n — 2 links connected by fixed joints. After this
process, the number of non-zero blocks in each row of
@, ; is limited to 2. Although the splitting increases
the number of joints by n — 3, the overall number of
joints never exceeds twice of that in the original chain,
so the asymptotic complexity is still O(N).

5 Examples

The algorithm was implemented using Visual C++
and executed on a PC with a PentiumIIT 850MHz pro-
cessor. Figures 4 and 5 show the snapshots of dynam-
ics simulation of serial and branched open kinematic
chains.

Fig.6 shows the time to compute the joint accelera-
tions of serial chains with 2 to 16 spherical joints. For
comparison, the dashed line shows the computation
time for unit vector method[1]. The new algorithm
shows better performance than unit vector method for
chains with more than 15 degrees of freedom (DOF),
and the computation time increases linearly against

2829

Figure 4: Dynamics simulation of a 30DOF serial
chain

Figure 5: Dynamics simulation of a 30DOF branched
chain

DOF. Note that the amount of computation for the
new algorithm depends solely on the number of links,
while that of unit vector method depends both on
the number of links and DOF. Therefore it is recom-
mended to minimize the number of links by utilizing
multi-degrees-of-freedom joints as much as possible.

Fig.7 shows the computation time for branched
chains with 2 to 12 end links hanging down from a
link connected to the ground through a spherical joint,
which is the most undesirable case of N ~ n; men-
tioned in section 4. The total degrees of freedom varies
from 9 to 39. The computation time without link
splitting is almost as same as unit vector method for
any case, while that with link splitting increases lin-
early and becomes shorter for chains with more than
30DOF.

6 Comparison with Other Methods

This section gives intuitive comparisons between
the proposed algorithm and two O(N) forward dy-
namics algorithms ABA and CFA. Comparing the
number of operations will be included in the future
works.

new method ’
20 A

****** unit vector method ,

@
T
1

0 : . ey h .

computation time [ms]
N

50

Figure 6: Computation time for serial chains; solid:
proposed method, dashed: unit vector method

6.1 Articulated Body Algorithm

Same as our algorithm, ABA also has two main
paths: one for computing ABI, another for computing
joint accelerations by computing the forward dynam-
ics of an one-joint chain. However, the physical role
of each path does not coincide with that of ours.

Physical meanings of ‘n; and M; in Eq.(40) can
be explained as follows. Let us divide the right hand
side of Eq.(40) into three parts: a;+1, —Si11.:'n;, and
M ;1 multiplied to the sum of first and second parts.
The first part a;; denotes the acceleration to be ex-
erted at joint ¢ + 1 to maintain the constraint condi-
tion at the initial state when all links are independent.
Actually, —a;11 includes all bias accelerations due to
velocity, gravity, external forces, joint forces, and so
on. The second part —S’i+17i"ni can be interpreted as
the extra acceleration at joint ¢ + 1 due to the con-
straint force at joint 7. The sum of first and second
parts, therefore, is the acceleration that should be ex-
erted at joint ¢ + 1 to maintain the constraint, under
the existence of joints 1 to i. M ;41 can be regarded
as the inertial matrix of the chain composed of links 0
to ¢ at joint ¢ + 1, since it maps the acceleration and
force at joint ¢ + 1, which is very similar to ABI.

The difference from ABI is that the inertia of link
i + 1 is included in My as is simply traced from
Eq.(41). This is because M ;4 is the inertia in terms
of the relative motion of links ¢ and ¢ + 1. The ABI
when the handle is link ¢, on the other hand, will not
include the inertia of link ¢ + 1 because the ABI is
computed without assuming the existence of link i+ 1;

2830

new method
—————— unit vector method

————————— new method (with link splitting) -

10

computation time [ms]
o
T

Figure 7: Computation time of branched chains; solid:
proposed method without link splitting, dashed: unit
vector method, dash-dotted: proposed method with
link splitting

in other words, without any assumption on the source
of the test force, although test force is nothing but
the constraint force in a physical sense. We can also
say that Path 1 of our algorithm partially executes the
forward dynamics computation, and therefore includes
a part of Path 2 in ABA. In addition, in our method
all constraint forces are computed through the forward
dynamics computation, while in ABA we need another
inverse dynamics step to compute them.

6.2 Constraint Force Algorithm

CFA relies on the orthognality of joint space and
constraint space, which was refined in the recent pa-
per by Featherstone and Fijany[6]. In our method,
this condition appears in Eq.(11), but is not use ex-
plicitly. We derive the projection between kinematic
constraints and constraint forces by way of the Prin-
ciple of Virtual Work.

7 Conclusion

The results of this paper are summarized as follows:

1. A forward dynamics algorithm with O(N) com-
plexity for unbranched and branched open kine-
matic chains was proposed and described in de-
tail. The method is based on the Principle of
Virtual Work, which is a quite different approach
from exisitng O(N) algorithms.

2831

2. Numerical examples demonstrated the efficiency
of the proposed algorithm.

3. Qualitative comparisons with other O(N) algo-
rithms were made.

Future works include a detailed evaluation of com-
plexity and accuracy, and extension to closed kine-
matic chains and parallel computation.

Acknowledgments

This research was supported by the Humanoid
Robotics Project, NEDO, Japan, and the CREST
Program of the Japan Science and Technology Cor-
poration.

References

[1] M.W. Walker and D.E. Orin: ¢ Efficient Dynamic
Computer Simulation of Robot Manipulators,” ASME
Journal on Dynamic Systems, Measurement and Con-
trol, vol.104, pp.205-211, 1982.

[2] E.J. Haug: Computer Aided Kinematics and Dynam-
ics of Mechanical Systems, Allyn and Bacon Series in
Engineering, 1989.

[3] R. Featherstone: Robot Dynamics Algorithm, Kluwer
Academic Publishers, Boston, MA, 1987.

[4] A. Fijany, I. Sharf, and G.M.T. D’Eleuterio: “Parallel
O(log N) Algorithms for Computation of Manipulator
Forward Dynamics,” IEEE Transactions on Robotics
and Automation, vol.11, no.3, pp.389-400, 1995.

[5] David Baraff: “Linear-Time Dynamics Using Lagrange
Multipliers,” In Proceedings of SIGGRAPH, pp.137—
146, 1996.

[6] R. Featherstone and A. Fijany: “A Technique for An-
alyzing Constrained Rigid-Body Systems, and its Ap-
plication to the Constraint Force Algorithm,” IEEE
Transactions on Robotics and Automation, vol.15,
no.6, pp.1140-1144, December 1999.

[7] Y. Nakamura and K. Yamane: “ Dynamics Compu-
tation of Structure-Varying Kinematic Chains and Its
Application to Human Figures,” IEEE Transactions
on Robotics and Automation, vol.16, no.2, pp.124-134,
2000.

[8] Y. Nakamura and M. Ghodoussi: “Dynamics Compu-
tation of Closed-Link Robot Mechanisms with Nonre-
dundant and Redundant Actuators,” IEEE Transac-
tions on Robotics and Automation, vol.5, no.3, pp.294—
302, 1989.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

