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Abstract

This paper discusses the dynamics computation of
closed kinematic chains, especially those found in mo-
tions of human figures. A number of efficient dynam-
ics computation algorithms have been established in
robotics for open kinematic chains and particular types
of closed kinematic chains; such as parallel five-bar
link mechanisms and the Stewart plaiform. The dy-
namics computation of closed kinematic chains, how-
ever, is still challenging and among open research is-
sues. In this paper, we describe the mobility of closed
kinematic chains by the minimal set of independent
variables, which we call the generalized coordinates of
a closed kinemalic chain. We then develop a system-
atic procedure to find them out, and establish the com-
putational algorithms for the inverse and forward dy-
namics of any closed kinematic chains. The numerical
ezamples show the effectiveness of the algorithms in
particular for computing high-degrees-of-freedom hu-
man/animal motions.

Key Words: Closed kinematic chains, Dynam-
ics computation, Generahzed coordinates, Human mo-
tion.

i Introduction

Many algorithms have been developed in robotics
for mverse and forward dynamics computation of
closed kinematic chains [1]-[5]; some of them achiev-
ing order-n complexity. Their main fields of applica-
tion are control and simulation of industrial robots,
which usually have relatively low degrees of freedom
and less closed loops, and are designed to have sim-
ple structures such as planar, parallel or symmetric
ones. Since industrial robots are artifacts designed by
ourselves, we know best their degrees of freedom and
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Figure 1: Closed kinematic chains in human motion

which variables represent the mobility of the structure,
except for the singular points.’ _

When human or animal bodies move, one finds
many complicated structures including closed kine-
matic chains as illustrated in Fig.1.. Holdmg a bar
by the both hands, or-standing with the both feet
on the ‘ground, for example generates a closed kine-
matic chain. .Dynamics computatlon of such systems
is comirig ifito need. for sunula,t. o1, contro} and mot10n
generation, Ii: the fields' of computer! g,raph]cs anima-
tions and humanoid: research. Among nmany’ Mmotions
of human ﬁgules 10com0t1011 is flequel y taken as a
research sthect and some methods for:its similation
have beén ploposed[ 3]- [8] Although they’ plovu]e effi-
cient methods for computmg the dynam]cs of walking
human: ﬁgules ‘more comphcated mtelactlons such as
those with other human figures* hodles for éexample,
are not considered.

The dynamics -computation algorithms currently
used in general purpose motion analysis softwares
[1] can handle any mechanisms and simulate their
motions. However, they tend to require enormous
amount of computation because of the large number



of coordinates they use. Several efficient order-n algo-
rthims are also proposed[4, 9], however, the number of
closed loops are assumed to be small in order to make
use of the sparsity of inertia matrix. Motions of hu-
man figures highly interacting with the environment
or each others, therefore, will increase the computa-
tional load because of the number of unknowns in the
equation.

In robotics, the dynamics computation algorithms
have been developed taking account of their efficiency
and adopting the minimal number of coordinates. The

algorithms were extended from open kinematic chains -

to closed ones, where the closed chain is transformed
into equivalent tree structure by virtually cutting some
joints in closed loops. Most of them use the Lagrange
multipliers to compute the constraint force and mo-
ment at the cut joints[2]. Alternative approach was
proposed by Nakamura and Ghodoussi [10], where the
Jacobian matrix of unactuated joints with respect to
actuated ones is used instead of the Lagrange multi-
pliers.”A similar method is used in [11] to derive a lin-
ear form of parallel mechanisms. This approach uses
the minimal number of coordinates and computation-
ally efficient. Another advantage of the approach is
that the values obtained during the computation have
clear physical meanings. However, the computation of
the Jacobian matrix was shown only for simple closed
kinematic chains such as parallel five-bar link struc-
tures. Therefore, the systematic computation of the
Jacobian matrix of unactuated joints with respect to
actuated ones for the general closed kinematic chains
remains an open research issue.

In this paper, we first introduce generalized coordi-
nate of a closed kinematic chain, which are defined as
the independent variables that represent the mobility
of the kinematic chain. As for a designed manipula-
tor, we know in advanice its degrees of freedom and the
variables that represent. the motion. For closed kine-
matic chains found in motions of human figures, on
the other hand, since we cannot predict their struc-
tures, the generalized coordinates or the degrees of
freedom are not defined or computed in advance. We
develop a general algorithm that systematically select
the generalized coordinates and compute the degree
of freedom. The developed algorithm is used with the
previously proposed efficient computation algorithm
of Nakamura et al.[10] and applied to compute the
inverse and forward dynamics of general closed kine-
matic chains. The usability of the algorithm is verified
by an example of dynamics simulation, followed by the
conclusions.
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Figure 3: Tree-structure open kinematic chain

2 Dynamics Computation of General
Closed Kinematic Chains

2.1 Generalized Coordinates of Closed
Kinematic Chains

Consider a closed kinematic chain in Fig.2. Let N
be the total number of joints in the chain, 8; € RN
the whole joint angles, N4 the number of actuated
joints, 84 € RV4 the actuated joints and 74 € RNA
the actuator torques. In this section, we assume that
the mechanism has rotational or translational joints
of single-degree-of-freedom for simplicity sake. Intro-
ducing multi-degrees-of-freedom joints requires no es-
sential modification to the algorithm, as discussed in
12]. . .

Suppose that the closed chain is virtually cut at
some joints and forms a tree-structure open kinematic
chain in Fig.3. Let No be the number of joints in
the tree-structure chain, 8o € RM° the joint angles
and 7o € RY° the joint torques. We assume at this
moment that all joints in the tree structure, includ-
ing those unactuated in the original closed chain, are
actuated to control the virtual tree structure.

Suppose that the tree structure makes the same mo-
tion as the original closed chain without force or mo-



ment interaction at the virtually cut joints. The joint
torques 7o required to generate the motion is com-
puted by recursive inverse dynamics algorithms for
open kinematic chains [13, 14, 15]. Note that nonzero
values may be obtained for the elements of 8o cor-
responding to the unactuated joints in the original
closed kinematic chain. :

Let the original closed kinematic chain have Np
degrees of freedom, 8¢ € RNF be the generalized co-
ordinates that describe the mobility of the closed kine-
matic chain, and 7 be the generalized force. We can
form 8¢ by selecting appropriate Np joints from 6,
for instance. Since the generalized coordinates deter-
mine the motion of the whole mechanism, @4 and 6o
can be written as follows:

6o = 60(6c) (1)
B4 = GA(Gg) (2)

From Eq.(1), the d’Alembert’s principle, and the
principle of virtual work, the joint torques of the tree
structure 7o and the generalized forces ¢ satisfy the
following equation[10]:

7560 = 756600 = TLW60¢ (3)
where 0
A o NoxN
W £ 22 ¢ pNoxNr 4
= 66 © “)

60 and 50G are the virtual displacements of 8o and
0, respectively. Similarly, Eq.(2) and the principle
of virtual work yield

T560G = 75604 = 15566 (5)
where 0
A A NaxNp
S=gg, € R N )

80 4 is the virtual displacement of 6 4. Since Eqgs.(3)
and (5) hold fdlj any 66, we have the following equa-
tions: ' o
¢ = Wirg “(7)
¢ = ST+, (8)
We can compute the actuator torque 74 from those
of the tree structure 7o through the generalized force
TG : . . . ’ .
Nakamura et al.[10] did not use the generalized co-
ordinates explicitly assuming that 60 is taken as a
subspace.of 664. As explained above, introducing
the generalized coordinates eliminates unnecessary as-
sumptions and restrictions on virtual cut joints, and
on the placement of actuated joints.

The inverse dynamics computation of general closed
kinematic chains consists of the following four steps:

Figure 4: Closed loop

(1) Compute W and S

(2) 'Comput,e 7o by inverse dynamics computation
for the tree structure

(3) Compute T by Eq.(7)
(4) Compute ‘rA‘by solving the linear equation (8)

If the mechanism does not have actuation redundancy,
namely, if the number of actuators equals to the degree
of freedom, § becomes a square matrix. Thus, 74 is
computed by

Ta=8TwT+, (9)

Otherwise 74 is not determined uniquely, and some
optimization method should be applied. Refer to [16]
for methods of optimizing actuation redundancy.

2.2 Computation of W and S

For many practical planar closed kinematic chains,
W and S become constant and can be formed from
visual inspection. It is also known that they are com-
puted relatively easily for some special closed kine-
matic chains such as parallel mechanisms. In this sub-
section we provide a general method for computing the
two matrices.

Consider a loop illustrated in Fig.4. The linear and
angular velocities of t:he'Sha.d(_)wed link L is' computed
from 8,4 as well as 8 by multiplying the Jacobian
matrices J 4 and Jp of the position and orientation
of link L with respect to 84 and 8, respectively. The
closed loop imposes the constraint that the velocity of
link L computed from 8 4 shoild be equal to that from
05, namely, -

(Ja —JB)<‘.’A>=0 (10)

05
Extending the discussion to the whole mechanism, the
constraint due to the #th closed loop is written in the

form ‘
Jri8; =0 (11)
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where Jr; is a 6 by N; matrix. The columns of Jp;
consist of those of the Jacobian matrices of link L with

respect to the joint angles, which can be calculated in

the same way as serial kinematic chains[17].

Let Ny be the number of independent closed loop
in the structure. Then we get N constraint matrices
JL%i = 1,2,...,Np) which forms the matrix J¢ €
RG LXNJ as

Ji
Jr2
Je & : (12)

SN,

Although J¢ represents all the kinematic constraints
in the mechanism, not all the rows in J¢ are inde-
pendent, namely, J¢ is not always full rank. We
extract linearly independent rows from J¢ and form
Jem € R™N9 where m is the rank of Jo. From
Eq.(11), Jcm satisfies:

Jem8s =0 (13)
Equation . (13) represents the m independent con-
straints of the closed loops. Since we have Nj joints
under m constraints, the remaining degrees of freedom
{mobility) of the whole mechanism Nr becomes

Np = NJ —-m (14)
Now we form Jg by extracting m independent
columns from J¢,,, and J¢ by gathering the remain-
ing columns. Also divide 8, into 85 and 8 according
to the division of J ¢, . From Eq.(13), J s, J¢g, @5 and
6 satisfy the equation

b

9(,-):0

Js8s = ~Jq0¢

Jemb; = (Js Ja ) ( (15)

Equivalently,
(16)

Since Jg is always invertible, Gg is uniquely deter-
mined by

Hég

6s = (17)
é 305 - -1 .
H = g = -Ji'Je (18)

Equation (17) implies that we can choose 8¢ as the
generalized coordinates. It is worth pointing out that
the generalized coordinate is automatically selected
through the process of forming Js.

The Jacobian matrices W and S are formed from
H immediately as follows:
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e W : If the ith joint of 8o is not a member of
the generalized coordinates and corresponds with
the jth one of 8, then include the jth row of H
as the ith row of W. If it is a member of the
generalized coordinates and corresponds with the
jth joint of 8¢, then include a unit vector with
jth element being 1 and others 0 as the ith row
of W. This procedure is shown in Fig.5.

e S : If the ith joint of @4 is not a member of
the generalized coordinates and corresponds with
the jth one of Bg, then include the jth row of
H as the ith row of S§. If it is a member of the
generalized coordinates and corresponds with the
Jth joint of B¢, then include a unit vector with
Jth element being 1 and others 0 as the ith row
of §. This procedure is shown in Fig.6

Figure 6: Forming S from H



2.3 Relationship of Accelerations
Differentiating Eq.(17) by time yields

és:HéG-I-HéG (19)
which calculates the acceleration of dependent joints
05 from generalized acceleration 8. This computa-
tion is required in forward dynamics computation. In
this subsection, computation of the second term of the
right-hand side of Eq.(19) is presented.

From Eq.(18) we have

. d . .
HOg = — {ﬁ(ng)JG + J;lJG} 0c (20)
On the other hand, J5'Js = E yields
d, . -1
Et-(JS )J5+J5 JS:O (21)
Using Eqgs.(16) and (21), Eq.(20) becomes
. HHG = . —ng(Jség +Jgeg)
= ~J5'Jcmb (22)

JC,nB 7 is formed by extracting the elements of
JCGJ corresponding to Jc,,, where JCG_, is com-
putéd in the’saine algorithm as one-for serial manipu-
lators [15].

3 Inverse and Forward Dynamics of
General Closed Kinematic Chains

3.1 Inverse Dynamics

The inverse dynamics of general closed kinematic
chains is computed by the following steps. First, com-
pute the Jacobian matrices W and S for the given
configuration by. the procedure explained in section
2.2. Next, compute:the joint torques. required to the
virtual tree structure to generate the desired joint ac-
celerations by applylng inverse dynamics algorithms
for open kinematic chains, and transform them into
the generalized forces by Eq.(7). Finally, compute
the actuator torques of the closed kinematic chain by
Eq.(9) or by solving Eq.(8).

3.2 Forward Dynamics
Although several forward dynamics algorithms are

known for open kinematic chains [1, 3, 5, 13], it
is difficult to apply them to closed chains due to
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the complexity of their structure. The unit vec-
tor approach[13], however, can be extended to closed
chains easily.

The equation of motion of closed kinematic chains
is written in the same form as open chains as

76 = A(8c)8c + b(85,0c) (23)

where 7¢ € RN is the generalized force, A €
RNFXNF s the inertia matrix and b € RVF includes
the sum of centrifugal, Colliolis and gravity forces.
In open kinematic chains, the joint angles are usually
used as the generalized coordinate and thus the joint
torques are the generalized force. Therefore, the accel-
erations of all joints are computed directly by Eq.(23).
In closed kinematic chains, on the other hand, the
joint torque vector and the generalized force may dif-
fer even in their dimensions. Additional computations
of transformation of the joint torques into the gener-
alized force and the generalized acceleration into the
joint acceleration are required.

The forward dynamics algorithm based on the in-
verse dynamics algorithm explained in the previous
subsection and the unit vector approach is summa-
rized as follows:

(1) Transform the inpﬁt joint torques 7,4 into the
generalized force 7 by Eq.(8).

(2) Compute the inverse dynamics for the zero gener-
alized acceleration and let the resultant general-
ized force be b. Usmg Eq.(19), the accelerations
of dependent joints 85 are given by HBC,, whose

computation method is shown in section 2.3.

Execute the following computation for 7 =

1,2,...,Np:

(3)

(a) Compute the i mverse dynamics with 8 =
e;, where e; € R"* is a unit vector whose
ith element is 1 and others 0. The acceler-
ations of dependent joints are computed by

substituting e; for 8¢ in Eq.(19).
(b) Let the computed generalized force be f,;
and calculate a; by a; = f; — b.

(¢) Include a; as the ¢.th column of A.

Using 7, b and A, compute the generalized ac-
celeration by

(4)

6 =A(ra—b) (24)
Compute 9q by Eq.(19), where HOG is already.
computed in step 2, to get the accelerations of all

joints.

(2]

~—



This algorithm requires O(Nn) computations,
where N,n are number of links and degrees of free-
dom of a closed kinematic chain, respectively. More
efficient O(NV) algorithms{4, 9], making use of sparsity
of matrices, may be more efficient than ours for simple
closed kinematic chains. But they fail to achieve that
efficiency for extremely compliated closed kinematic
chains. The complexity of our method, on the other
hand, is always O(Nn) for kinematic chains with any
number of closed loops. Moreover, as the number of
closed loops increases, the degrees of freedom n be-
comes smaller compared to the number of links N. In
motion synthesis and generation, which is an interest-
ing issue in controlling humanoid robots or human fig-
ures in computer graphics, we find another advantage
of this approach since, through the forward dynamics
computation, we can obtain the inertia matrix with
respect to joint angles that allows us to inspect the
physical consistency of a motion given as joint angle
data or keyframes.

4 Example of Dynamics Simulation

Figure 8 shows an example of dynamics simulation
of a closed kinematic chain, where a monkey holds
a swing. The algorithm is implemented using Mi-
crosoft Visual C++, and runs on a PC with Pentium
Pro 200MHz processor and an OpenGL graphic board.
The human figure has 16 degrees of freedom (4 for each
arm and leg) as illustrated in Fig.7, and the swing con-
sists of six spherical joints, thus we have 34 degrees of
freedom and two closed loops in total. Connections be-
tween the hands and the swing are represented by two
virtual links, which are used to describe closed loops
in our link connectivity description[12]. Therefore it is
quite easy to cut both or one-of the connections dur-
ing the simulation by eliminating the virtual links, to
make the character fall down. We applied zero torques

except for the case when we need to-restrict the joint .

angles within their limits. The sampling time for the
forward dynamics is approximately 25msec.

5 Conclusions

The results obtained in this research is summarized
by the following four items:

(1) We introduced the concept of the generalized co-
ordinates of a closed kinematic chain, which al-
lows a general formulation of the inverse dynam-
ics computation of closed kinematic chains.
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(2) We developed a systematic algorithm for comput-
ing the degrees of freedom and selecting the gener-
alized coordinates of closed kinematic chains and
compute the jacobian matrices for the inverse dy-
namics computation.

(3) Inverse and forward dynamics algorithms of gen-

eral closed kinematic chains are established.

(4) The developed algorithms were implemented. An

example of motion simulation of human figures

verified their feasibility and compuational effi-
clency.
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