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Abstract

This paper discusses the dynamics computation of
structure-varying kinematic chains which imply me-
chanical link systems whose structure may change
from open kinematic chain to closed one and wvice
versa. The proposed algorithm can handle struc-
ture changes in a seamless manner without switch-
mg among algorithms for different binematic chains.
The structure-varying kinematic chains are commonly
found in computing humaen motions. The developed
computation will provide the general algorithm for the
computation of motion and control of humanoid robots
and CG human figures.
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chains.

1 Introduction

The advance of humanoid robot research necessi-
tates efficient computational schemes for simulating,
controlling and generating its motion. Also in com-
puter graphics (CQ), strongly demanded is the tools
that can antomatically create CG animations with dy-
namic motions of human and/or animal characters.
The key issue concerning these two cases is how to
generate various motions considering dynamical con-
sistency. the condition that the motion is physically
feasible. In fact, controlling a humanoid robot on
the basis of dynamically consistent motion would con-
tribute to the realization of fast, natural and stable
motions. In CG, dynamical consistency will lead to
cost and time efficiency for generating natural human
motions.

Compared to conventional robot manipulators for
which most dynamics computation algorithms are de-
signed, the major property of human motions is that
the link structure may change during the motion from
an open kinematic chain to a closed one and vice versa,
by catching or releasing an object with the hands as
illustrated in Fig.1l. In this paper, such systems are
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Fig.1: Structure-varying kinematic chain

said to be structure-varying. Therefore, the dynamics
computation algorithm for human motion is desired
to readily handle structure changes. Dynamics sim-
ulation of locomotion has heen discussed in several
researches [1, 2, 3]. Although they provide efficient al-
gorithms for computing the dynamics of walking hu-
man figures, they do not consider more complicated
interactions such as catching high bar or other human
figures’ bodies.

The difficulty of handling structure-varying systems
may depend on how the link connectivity of the mech-
anism is described. However, the method of describing
link connectivity has seldom been discussed from that
point of view. Previous researches represented the re-
lation of links via linear graphs [4], matrices [5] or
vectors [6]. From a practical or programming point of
view, however, they are not always effective because
the program has to search among elements to find out
whether there exists a closed loop or even which link
is connected to one.

In this paper, we first briefly summarize our dynam-
ics computation method for closed kinematic chains.
Next, we present the method of describing link con-
figuration. Pointers. a function of C/C++ program-
ming language, are applied to describe open kinematic
chains. In order to describe closed chains. virtual links
are also introduced. Khalil et al.[7] proposed a no-
tation for closed kinematic chains and uses a sinmlar
concept, but they focus on the notation of geometry
of links and do not explicitly use an additional link for
a closed loop.



Handling structure change is then discussed. Our
description with pointers and virtual links are shown
to be powerful in handling structure changes. We also
establish the computation of the velocity boundary
condition after structure change with collision due to
nonzero relative velocity.

Finally, two examples of dynamics simulation of hu-
man figures with structure changes are presented and
followed by the conclusions.

2 Dynamics Computation of Closed
Kinematic Chains

In this section, a summary of our dynamics compu-
tation method is presented.

We first virtually cut the closed loops to make a
tree-structure open kinematic chain, and then apply
the principle of virtual work to compute the inverse
dynamics. This approach was originally proposed by
Nakamura et al.[8] and also used in [9]. Finally, for-
ward dynamics is computed by applying unit vector
method[10].

Let 8;,8¢ and 8 4 be the generalized coordinate of
the closed kinematic chain, joint angles of the virtual
tree structure and the joint angles of actuated joints in
the original closed kinematic chain, respectively. Us-
ing two Jacobian matrices W and § defined as:

AN 00()
= 1
124 90 (1)
A 69,4
= 2
5 28, (2)

the following equations are yieleded by the priciple of

virtual work:

wTro

STTA

(3)
(4)

where 7 is the generalized force, T¢ is the virtual
torque of the tree structure and 74 is the actuator
torque.

Inverse dynamics computation is summarized by
the following four steps:

TG

Il

TG

(1) Compute W and S

(2) Compute 7o by inverse dynamics computa-
tion for the tree structure, i.e. Newton-Euler
formulation[11]

(3) Compute 7¢ by Eq.(3)

(4) Compute T4 by solving the linear equation (4)
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To apply this method to general closed kinematic
chains, we developed a systematic procedure to au-
tomatically select the generalized coordinates ¢ and
compute the Jacobian matrices W and §, which was
not presented in [8].

First, we derive the independent contraints imposed
by the closed loops through the geometric relation-
ships of the joints. Suppose the constraint is expressed

‘ (5)

where 8; is the joint angles and J¢y, is the con-
straint matrix. If there are N; joints and J, has
m rows, which means that there are m independent
constraints, then the degrees of freedom of the whole |
mechanism Np is computed by

J('méJ =0 5

(6)

Now we form Jg by extracting m independent
columns from J ¢y, and J by gathering the remain-
ing columns. Also divide 8; into 85 and 8; according
to the division of J¢,,. From Eq.(5), J5, J¢. 85 and
8¢ satisfy the equation

Np=N;-m

85

J(hnéJ = ( JS JG ) ( 0(,

):o (7)

Equivalently,

Js0s = -Js0g (8)

Since Jg is always invertible, 05 is uniquely deter-
mined by

(9)

6s = Hé
A 005 _ -1
H £ 255l (10)

Equation (9) implies that we can choose 8¢ as the
generalized coordinates. Finally, W and § are formed
from H by selecting appropriate rows from H.

3 Connectivity Description of Kine-
matic Chains

3.1 Pointers Describe Open Kinematic
Chains

For the efficiency of computation, and for the conve-
nience of implementation, we propose to use pointers
to describe link connectivity. Pointer is an important
function of C/C++ programming language and acts
as an arrow from a link to another. Since the value of
a pointer is the address of a specified datum. we can



refer to the data of a link in issue immediately through
the pointer to it.

We use three pointers for each link to describe open
kinematic chains. The meanings of the pointers are
illustrated in Fig.2. The parent pointer points the
next link connected towards the base link. The child
pointer, on the other hand, points the next link con-
nected towards an end link. The brother pointer points
a link with the same parent, in case the parent link has
several links connected towards end links.

Base Link

End Link
e N

Fig.2:
chains

Three pointers to describe open kinematic

The recursive dynamics computations of the
Newton-Euler formulation [11] are implemented us-
ing the three pointers and recursive call of functions.
For the forward path computations, the functions are
called recursively for the child and brother links af-
ter the computation for itself. For the backward path
computations, on the other hand, recursive calls are
made before the computation for itself.

3.2 Virtual Links Describe Closed Kine-
matic Chains

The three pointers are applicable only to open kine-
matic chains, since the parent-child relationship for a
closed kinematic chain results in an infinite loop.

First, as illustrated in Fig.3, we virtually cut one
joint in each closed loop to avoid infinite loops, just
as we did in the dynamics computation. Since the
mechanism is no longer a closed chain, we can describe
it by the three pointers. To represent the connection
at the virtually cut joints. we add a virtual link to one
of the two links that had heen connected by the cut
joint. Since wirtual link is introduced only to describe
a closed loop, it has kinematic properties such as joint
values and link length, but no dynamic properties such
as mass or inertia. In order to indicate the real link
of a virtnal link, we introduce a new pointer called
real pointer. The real pointer is valid only for virtnal
links. Note that the description of a closed chain is not
unique and depends on which joint in a closed loop is
virtually cut.

To summarize, any open or closed kinematic chains
are described by four pointers  parent, child, brother

and real and a wmrtual link corresponding to each
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Fig.3: Describing closed loop by virtual link

closed loop. An example of a description of a closed
kinematic chain is shown in Fig.4. The advantages of
our approach are:

o Suitable for recursive implementation of dynam-
ics computations.

e Easy to find out closed loops, since each closed
loop has a corresponding virtual link.

o Simple choice of virtual cut joints for dynamics
computation. They coincide with the joints of
the virtual links.

e Less data and computation for link connectivities.
It is proportional to the number of links.

Parent

Name

Child

Real

Braother

Fig.4: Example of describing kinematic chain

4 Dynamics Computation of Structure-
Varying Kinematic Chains

4.1 Structure-Varying Systems

Unlike industrial robots, the structure of human
figures and amimal figures may vary in time as they
move. A human figure is a free-floating open kine-
matic chain of tree structure by himself. When he
grabs a high bar with the both hands. he makes a
closed kinematic chain. He might form another open
kinematic chain by releasing one of the two hands.
Even for a simple walk, dynamics computation of hu-
man figures might need to switch and use three mod-
els of kinematic chain; an open kinematic chain with



only the left foot on the ground, a closed kinematic
chain with the both feet on the ground, and another
open kinematic chain with only the right foot on the
ground. With conventional computation algorithms,
we would have to prepare several different structure
models and switch between them. We call such sys-
tems “structure-varying” ones, whose dynamics com-
putation, to our knowledge, has not heen established
in literature.

The aim of this section is to develop a general
method to handle structure changes seamlessly with-
out switching hetween different dynamical models and
algorithms. In the following subsection, we show that
the algorithm developed in sections 2 and 3 can attain
the goal by taking an advantage of simple maintenance
of link connectivity using pointers and virtual links.

4.2 Link Connectivity Maintenance

First, consider a case in which two links are con-
nected to create a new joint. If a closed loop is gen-
erated by the connection, as in a case illustrated in
Fig.5, we add a virtual link at the new joint. The
procedure is as simple as:

(1) Create virtual link Link {v whose real link is
Link 4.

(2) Add Link 4v to the data as a child of Link 5.

which is easily programmed and computed on line,

The descriptions of link configurations before and after
the connection are shown in Fig.6.

Fig.5: Example of link connection

In the case where a free-floating chain is connected
to another chain, the situation hecomes complicated.
Figure 7 shows a case where Link 1 of a free-flying
chain is connected to Ground and a new joint is cre-
ated. Since the structure after the connection is ap-
parently an open chain. it seems natural to change
the data as shown in Fig.8. The remarks “Rotate”
and “Free” in the figure indicate the joint types. One
must notice, however, that it requires inversion of the
parent-child relationship of Base and Link 1, which
results in modification of the Denavit-Hartenberg pa-
rameters and the values of some dynamic parameters,
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Link3

Link3

Fig.6: Link structure description before and after con-
nection of Fig.5

and the indexing of joints. The modification is not
difficult, but needs additional computation, which is
crucial if the structure varies in real time. When the
structure change is known beforehand, the computa-
tional burden is reduced by preparing different connec-
tivity models in advance, which would he, however, as
tedious and complicated as switching between differ-
ent dynamical models and algorithms.

Fig.7: Open kinematic chain generated by link con-
nection

Fig.8: Possible change of link structure description
due to connection of Fig.7

We propose to treat this case exactly in the same
way as the previous case:

(1) Create a virtual link of Link I and name it
Link 1v.



(2) Connect Link Iv to Ground through the new ro-
tational joint.

Figure 9 shows the description of new structure,
which does not require the inversion of the relationship
of Base and Link 1.

Fig.9: Closed kinematic chain with free joint

Note that the number of links increases only by one
as explained in section 5.2 although the amount of dy-
namics computation in this case becomes larger than
that when it is treated as an open chain. Therefore,
we might need more careful comparison of computa-
tion loss due to ease of connectivity maintenance and
computation gain due to increase of the number of
joints. However, we claim the advantage of the ahove
procedure from the following two viewpoints:

(1) Simplicity of algorithm is valuable for program-
ming and, eventually, offers better usability for
the end-users.

(2) The computation gain due to increase of the num-
ber of joints would be reduced in time by employ-
ing parallel processing[12], although the compu-
tation for connectivity maintenance cannot take
an advantage of parallelism.

In the rest half of this subsection we discuss the
procedure for cutting a connection of two links at the
joint between them. Note that this is a physical cut-
ting, while the cutting in dynamics computation was
virtual.

If the cut joint is related to a virtual link, the pro-
cedure is exactly the opposite of that in link connec-
tion. First suppose, in the structure after connection
in Fig.5, the joint between Link 8 and Link § is cut,
which is handled simply by deleting Link 4v. For a
human figure, connections and cuts commonly occur
at the hands or foots. Therefore, when human fig-
ures are concerned, we generally assume that cutting
occurs only at the joints related to virtual links.

In general kinematic chains, however, this is not
always the case. Even if the cut joint is not related to
a virtual link, structure change can be readily handled
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by introducing a free joint as in section 5.2. Suppose,
in the structure after the connection in Fig.5, that the
joint between Link I and Link 8 is cut. The procedure
in this case becomes:

(1) Cut the parent-child relation between Link I and
Link 3.

(2) Connect Link 3 to Base by a free joint.

The link structure and its description are shown in

Fig.10. The connection between Link 3 and Link { is
maintained by the virtual link Link 4o.

Fig.10: Link structure and its description after cutting

4.3 Velocity Boundary Condition after
Structure Changes

When two links are connected with nonzero rela-
tive velocity, discontinnous change of joint velocities
occurs due to the collision. When they are cut, we
can assume zero relative velocity except for those with
explosions. The forward dynamics computation re-
quires the houndary condition of joint velocities after
the structure changes. In this section, we present an
algorithm to compute the velocity boundary condi-
tion.

Suppose that the two connecting links bhelong to
chain 1 and chain 2. Let 8;(i = 1,2) he the gen-
eralized coordinates of chains 1 and 2, J; = 9r/08;
the Jacobian matrices of the connection point r with
respect to the generalized coordinates, and A; their
inertia matrices.

Also suppose that the generalized velocities change
as much as A@; due to the impact forces F; applied
to the two chains at the connection point, and a new p
degrees-of-freedom joint 8,, € R? is created. Accord-
ing to the discussion in the previous subsection, a new
virtual link is created at the connection point. Let J,,
be the Jacobian matrix of the virtual link with respect
to @,,.

The applied force and the change of momentum of
each chain are related by

AA8;=-JTF; (i=1.2) (11)



Since F, is the reaction of F'y, they satisfy

Fy = —F, (12)
On the other hand, the following equation is yielded
by the condition that the velocity of the virtual link

coincides with that of its real link.

Jl (01 +A01) = J?(é2 +A92)+Jnén (13)

The impact force due to the collision has zero com-

ponents along the unconstrained direction of the new

joint 8,,. This condition is expressed as

JIF, =0 (14)

The change of generalized velocities A6y and A6,
are computed from Eqs.(11) (14) as

A8, = —A7'JTBY(Eg-Clv  (15)

A8, = A;'ITB Y (E;—C)v (16)
where

B = J5AT'IT +0,4A51T] (1

¢ = J.(JIB7'7,)'JrB™! (18)

v = J1é1—Jgé-2 (19)

and Fg is a 6 x 6 identity matrix. B and J;CB_]J,,
are invertible if either Jy or J2 and J, are row full
rank. Otherwise, in planar mechanisms, for instance,
we may choose independent rows from Jy and Jo, in
which case the sizes of C' and v should be changed to
appropriate ones.

If the connected two links are fixed to each other,
namely, p = 0, A91 and Aég are computed by substi-
tuting O to C in Eqs.(15) and (16).

When the two links are in the same chain, the gen-
eralized coordinates and the mass matrices in the pre-
vious discussion coincide with each other, while the
Jacobian matrices J1 and J, are different. Therefore,
the following equation is nused in place of Eq.(11):

A A0 =-JTF, - JIF, (20)
The unknown, A@ in this case, is solved by
Ab, = —ATVITB(Es - C)o (21)
where
B = (J1 —J)A7V(J = J)T (22)
¢ = J,(JTB 1) JTB™ (23)
v = (J1—J2)8 (24)
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5 Multi-Degrees-of-Freedom Joints

5.1 Spherical Joints

Figure 11 illustrates the joint configuration of an
example of human body model. The 40 degrees of
freedom of the model include 4 rotational joints and
12 spherical joints, which shows that many joints in
human bodies can be modeled as spherical joints.

In robot manipulators, a spherical joint is mechani-
cally implemented as three successive rotational joints
with their axes intersecting at a point. With this
mechanical implementation and the modeling, the 40
d.o.f. model of human body would need 41 links to
treat in dynamics computation.

Physiological structure or implementation of hu-
man bhody is far more complex and heyond our scope of
efficient computation. This fact requires and allows us
to adopt a mechanical model that is suitable for com-
putational efficiency and not necessarily constrained
by mechanical implementation. As a computational
model of human figures, we assume a spherical joint
is equipped with 3 d.o.f. spherical motor or a similar
actnator. With this assumption, we can significantly
reduce the number of links. In fact, only 17 links are
required for the model in Fig.11 if spherical joints are
considered. In addition, the description of link config-
uration becomes simpler and requires no discussion of
artificial kinematic singularity.

3 d.of. spherical joints cause a difficulty in nu-
merical integration of relative orientation between the
two links connected by them. Although the Euler
angles representation can avoid such problem it has
the problem of singularity. Integration problem would
arise when we apply other methods such as the Euler
parameters[13] to avoid singularity. We present helow
a method of first-order Euler integration of relative

& Rotational joint
@ Spherical joint

Fig.11: Example of human model



orientation using the Rodrigues’ formula[13], which is
often used for finite spatial rotation.

Let w; be the relative angular velocity and R; the
relative orientation of link ¢ with respect to its parent
link at time ¢. The relative orientation at t + At, R!,
is computed by

R, = (E3 + 2sinf + 2°(1 —cos8))R;  (25)
where

= w;At (26)
0 = |6 (27)
e 0, 2.)T = 8 (28)

0 -z, &
fo4£0 2 = @, 0 =@ | (29)

-2, @ 0

fe=002 = 0O

and Ej is a 3 x 3 identity matrix.

5.2 Free Joints

In order to treat the cases where the base link is
not fixed to the inertial frame, we introduce a six-
degrees-of-freedom “free” joint between the base link
and the inertial frame, whose actuator torque is always
zero; thus forward dynamics is computed in the same
way as base-fixed chains, Note that the six-degrees-of-
freedom joint is not decomposed into six single-degree-
of-freedom joints but treated as one joint. This can
reduce the amount of computation especially for re-
cursive computation of kinematics and dynamics.

%—E’.‘E@
@_-@‘

Fig.12: Free-flying kinematic chain

6 Examples

We show two examples of simulations of a simple
human figure with structure changes. The algorithm
is implemented using Microsoft Visual C++, and runs
on a PC with Pentium Pro 200MHz processor and an
OpenGL graphic board. The human figure in the sim-
ulations has 16 degrees of freedom (4 for each arm and
leg) as illustrated in Fig.13. We applied zero torques
except for the case when we need to restrict the joint
angles within their limits. The sampling time for the
forward dynamics is approximately 25msec in the both
examples.
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J

éédé Rotational joint

©

Spherical joint

Fig.13: 16 d.o.f. human figure in the simulations

High Bar : Figure 14 shows a human figure play-
ing high bar and releasing the right hand during the
motion. Initially there is a rotational joint hetween
each hand and the bar, one of which is eut at an ar-
hitrary given time. In this case, including free joints
and joints at the hands, we initially had 24 degrees of
freedom in total and used 23 degrees of freedom after
releasing the right hand.

Swing : What happens if a swing breaks down while
you are playing on it? The answer is shown in Fig.15.
Each hand and the rod of the swing is connected by
3 d.of. spherical joint. There is a translational joint
between each thigh and the plate of the swing, which
is programmed to be cut when the thigh goes out of
the plate. In this case, including the swing, we initially
had 30 degrees of freedom in total and used 28 degrees
of freedom in the final figure of Fig.15.

7 Conclusions
The results obtained in this research are summa-
rized by the following five terms:

(1) Link structure notation via pointers and virtual
links is proposed, which is suited for both imple-
mentation and execution of dynamics computa-
tion algorithms.

A systematic and seamless on-line procedure of
connectivity maintenance is developed. Any link
connection or joint cutting are handled on line,
and there i1s no need to prepare every possible
kinematic chain in advance.

A method of computing the velocity boundary
condition after configuration changes is estab-
lished, which is required when links are connected
or cut with non-zero relative velocity.

It is shown that the number of links is reduced
by considering 3 d.o.f. spherical joints. We pro-

posed to use 3 d.o.f. spherical joints to model



Fig.15:
human figures for representational and computa-
tional simplicity. A method of integrating the rel-
ative orientation of the two links connected by a
spherical joint is also presented.

The algorithms were implemented and examples
of simulating motions of human figures verified
their feasibility and computational efficiency.
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