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Abstract In this paper we propose a calculation method for
the optimal trajectory of a biped locomotion machine which
is based on inverse kinematics and inverse dynamics. First,
the trajectory of the waist is expressed by a Fourier series,
where the bascs are sclected appropriately so that the
periodic boundary conditions are strictly satisfied. A biped
locomotion machine establishes optimal walking by using
kicking forces to the ground at the moment of switching
legs. In order to include the effects of the kicking forces,
additional terms that indicate the impuilsive forces at the
moment of switching legs are included in the formulation.
Then the angles of each joint are determined by inverse
kinematics, and using inverse dynamics, the input torques of
each joint are expressed in terms of Fourier coefficients. By
defining the performance index as a quadratic form of the
input torques, the motion planning problem is formulated
as an optimization problem of the trajectory of the waist,
whose parameters are Fourier coefficients of the trajectory
of the waist. Using the successive quadratic programming
(SQP) method, the optimal trajectory of a biped locomo-
tion machine is obtained.

Key words Biped locomotion - Optimal motion - Inverse
kinematics - Inverse dynamics

Introduction

In a previous paper," we studied the motion control of a
biped locomotion machine and proposed a hierarchical
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controller for the system. The upper controller is a motion
planning system and generates an appropriate walking tra-
jectory. The lower one is a motion controlling system, and
controls each joint using feedback control and also controls
gait parameters included in the trajectory.

This paper deals with the optimal motion planning of a
biped locomotion machine in the motion planning system.
In this paper, the optimal motion planning is formulated
as an optimization problem of the trajectory of the waist.”
From the view point of kinematics, the trajectory of a biped
locomotion machine is periodic, and the trajectory necds to
satisfy the boundary conditions strictly at the moment of
switching legs. In order to derive such trajectory, many
calculation times are required. To date, several optimiza-
tion methods for the trajectories of nonlinear, multibody
systems have been proposed.’ In some research,*’ the input
torques are expressed as Fourier serics, and the motion
planning problem is reduced to the optimization problem,
where Fourier coefficients of the input torques become its
optimization parameters. Even il we use this method, how-
ever, many calculation times are required in order to satisfy
the constraints corresponding to the boundary conditions
mentioned above.

In this paper, a calculation method for the optimal trajec-
tory of a biped locomotion machine is proposed, which is
based on inverse kinematics and inverse dynamics. First, the
trajectory of the waist is expressed as a Fourier series, where
the bases are selected appropriately so that the periodic
boundary conditions are strictly satisfied. Then, the angles of
each joint are determined by inverse kinematics and using
inverse dynamics. The input torques of each joint arc ex-
pressed in terms of Fourier cocfficients. The performance
index is defined as a quadratic form of the input torques, and
then the Fourier cocfficients of the trajectory of the waist
become its optimization parameters. As a result, the motion
planning problem becomes as optimization problem of the
trajectory of the waist whose parameters are the Fourier
cocfiicients of the trajectory of the waist.

A biped locomotion machine establishes optimal walking
by using kicking forces to the ground at the moment of
switching legs. In order to include the effects of these kicking



forces, many terms of a Fourier series are required, and this
needs lengthy calculation. The kicking forces acting on the
system causes discontinuities in the velocities of the motion.
Considering this fact, in this paper, Fourier coefficients are
chosen as to express the discontinuity of the velocity at the
moment of switching legs. Then, using the successive qua-
dratic programming (SQP) method, the optimal trajectory of
a biped locomotion machine is obtained.

Equations of motion

We consider a biped locomotion machine composed of the
main body and two legs, as shown in Fig. 1. Each leg is
composed of two links connected to each other with a one
DOF (degree of freedom) rotational joint, and connected to
the main body with a one DOF rotational joint. The motion
of the biped locomotion machine considered here is con-
strained in the sagittal plane. The legs are numbered 1 and
2, where leg 1 is considered as the supporting leg. The links
of leg 1 are numbered 1 and 2 from the supporting point to
the main body, and the links of leg 2 are numbered 4 and 5
from the main body to the end of the leg. The main body is
link 3. The actuators are located at joints 2, 3, 4, and 5, but
there is no actuator at the supporting point (joint 1). We
define a set of unit vectors {a,,, a,,, a,} fixed to an inertial
space whose origin corresponds to the supporting point,
where the direction of a,, corresponds to the sagittal direc-
tion, and the direction of a, is vertically up. Similarly, a set
of unit vectors {a,, @, a;} is defined whose origin is on joint
i, where a; is along the axis of link i, and the direction of a;
coincides with the rotational axis of joint i.

Link 3
Main Body

Fig. 1 Schematic model of biped locomotion

Using these unit vectors, we define the following unit
column-matrices.
[a,-]T = [a,«l a; a,-3] (i =0,12,..., 5)

We also define the following variables:
0,is the angle of rotation of link i relative to link i — 1 about

an axis of rotation of joint i.
A, is the transformation matrix from [a)] to [a].

cosf;, sin0; 0
A; -, =|—sinb; cos0;, 0
0 0 1

o; = [a] , is the angular velocity vector of [a] to [a]

r, = [a]"r, is the position vector from the origin of [a,_,] to
the origin of [a/]

R, = [a]'R; is the position vector from the origin of [a/] to
the center of mass of link i

g = [a,]"g is the acceleration vector of gravity

We express a cross product of vector x = [a]” x as %in [a]

system as

X 0 X3  —X
X=X x=|-x 0 x (D
X3 x, —x 0
We use the vector & as the state variable.
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Generalized momenta relating to the state variable & are
given as follows:
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where, I; is 3-X 3 identity matrix and J, (i = 1,.. ., 5) are
inertia matrices of each link at the center of mass. m; (i =
1,...,5) are the masses of each link.

Equations of motion relating to generalized momenta £,
are derived as follows:
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~and u; is a control torque acting at joint 7.

As mentioned above, a biped locomotion machine estab-
lishes optimal walking by using kicking forces to the ground
~at the moment of switching legs. Here, the kicking forces
are modeled as impulsive forces. The variances of angular
momenta, L, by the impulsive forces are denoted by AL,
‘The variances Ad, of angular velocities @; are expressed in
- terms of A7, by integrating Eq. 3 over a small time interval
—e=t=¢ge>0as

5 ‘ A
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The variance Ad,, of the angular velocity of the main
body is expressed by using Egs. 9-13 as follows:
Adyy, = Klgl(Kll Adyy + Ky Adyy,

. . (14)
+ Ky Aoy + Ksy Addsy )

Optimization of motion

In this section, we consider the optimization of the trajec-
tory of the biped locomotion machine. Figure 2 shows the
trajectory of a biped locomotion machine in the sagittal .
plane. The desired stride, S, and the desired walking period,
i, are given. Then, the trajectory of the end of the swinging
leg z.is given as a function of the stride S, period ¢, and time
t as follows:

(15)

= [aO]TZc

4=%] ‘ (16)
Ve

X =x(t, S, tf) (17)

Yo =ye(t: 8, 1) (18)

The trajectory of the waist in the sagittal plz{ne Zy I
expressed by a Fourier series as follows:

L = [ao]T Zp (19)
Trajectory
.. of the Waist
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Fig. 2 Trajectory of a biped locomotion machine in the sagittal plane
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* Note that by using this expression for the trajectory, the
continuity of the trajectory at the moment of switching legs
i strictly satisfied. On:the other hand, the: effect ‘of the
impulsive force acting on the system is expressed as the
discontinuity- of ‘the velocity at the moment of switching
legs, which is expressed by the terms sm@—l——g—t

!
Using inverse kinematics, the tra]ectorres of each link of
the legs are calculated as functions of the trajectory of the
waist, z;, and the trajectory of the endof the swmgrng leg, Ze

as follows : S

0, = 91(1, Xp, )’b)
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where 8, = 0, + 0, is the angle of rotation of link 4 relative
to link 2.

The tra]ectorres of the main body, 0, (u32, are determined
as follows: First, it is assumed that the inclination angle of

‘the main body to the inertial space is small,

Then Eq: 4 is linearized as

g s e e T
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In Eq. 27, variables 0,, 05, 6., 0, w,oq, Oyp (F = 1,2,5) are
already calculated as functions of the trajectories of the
waist and the end of the swmgmg leg in Eqgs. 24 and 25, so

@7

+ Fz(eia Wii-15 (bii—le' ) .:1 (i =1,2, 5‘)

Eq. 27 is a linearized dlfferentlal equatron for variable 65,

that determines the motion of the main body. In order to.
determine the trajectory of the main body, we have to solve
Eq. 27 as a boundary value problem.

A boundary condition is given as follows

63(0) =0,(t) + {e (1) + el(tf) 62‘(0‘) - el(o)}

Equatron 28 indicates that the inclination angles of the main
body to the inertial space satisfy the continuity of the trajec-
tory at the moment of switching legs. The tra]ectory of the
main body is' given as: the solutron of Eq. 27 under the

(28)

boundary conditions of Egs. 14 and 28.

Using inverse dynamics, the input torques of each ]omt
during the single supporting phase are given as ‘

(8, i1 Dit) = Lo+ VIR =Gy (9
a3(e Wiy, Gp) = Ly + VI = G, (30)
24(0,, 0y D) =‘ FVIB -6 31)
05(6;, iy @y 1) = Ls + VI = G (32)

(z =1,..., 5)

-~ The 1mpu1s1ve torques actmg at each ]omt are expressed

~ by integrating Eqgs. 29-32-over a small interval ~e = =<',

¢ >0as follows

A, = AL, - (33)
Aiy = AL, (34)
Ali, = AL, (35)
Aiig = ALy (36)

The performance mdex is composed of two parts The

first part evaluates the cost of the input torque of each Jjoint

in the single supporting phase. The other one estimates the
effects of impulsive forces at the moment of sw1tch1ng legs.
The performance mdex is deﬁned mn quadratrc form as

J=J,+ Ty (37)
i
= j;’Z-R—;ﬁ}dt 3
: i‘:‘Z Ti“ R
5 :
Ty =W il (39)
=2 o

where W is a coefficient and R, Ky are values of the"
electrical resistor and torque coefficient of each actuator,
respectively. ‘
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Flg 3 Flow chart of motion planning (SQP: successive quadratic pro-
gramming method) : : :

Length (m) Mass (kg) Inertia (kgm?)
inks 0.20 1.5 50 x 107
Links 2,4 0.20 2.0 7.0 X107
sink 3 0.30 5.0 1.0 X 1072

“The first term of the performance index evaluates the
nergy consumption at the coils of electric DC actuators in
he single supporting phase. The second term evaluates the
mpulsive one.

A motion planning algorithm of the biped locomotion
machine proposed is shown in Fig. 3.

Numerical examples

Using the motion planning algorithm proposed, the dy-
_namic performances of a biped locomotion machine are
investigated. Table 1 shows the physical parameters of the
biped locomotion machine used in the experimental setup.
The trajectory of the waist is expressed using Fourier series
_up to the 2nd mode. Figures 4 and 5 show stick figures of a
biped locomotion machine corresponding to the optimal
solutions. Figure 4 shows the case without impulsive forces,
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Fig. 4 Stick figure of a biped locomotion machine (without impulsive
force)
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Fig. 5 Stick figure of a biped locomotion machine (with impulsive
force)

and Fig. 5 shows that with impulsive forces. Figure 6 shows
the trajectory of the waist with the weight value of the
performance index W as a parameter. From these figures,
the optimal trajectory of a biped locomotion machine is
planned using the algorithm proposed in this paper, and we
note that a biped locomotion machine has different walking
patterns according to whether it uses the impulsive forces
actively or not. When W is large, the center of mass of the
system in the optimal motion derived is almost constant in
height. On the other hand, when W is small, the optimal
motion of the system derived becomes like an inverted
pendulum. ~

Conclusion

A motion planning method for a biped locomotion machine
is proposed. The trajectory of the waist is expressed by a
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Fig. 6 Trajectory of the waist (W is a parameter) -

Foumer serles satisfying the. continuity- COIldlthnS of the
trajectory at the moment of switching legs, and also includ-

ing the terms that express the discontinuities of the veloci-
ties at the moment of switching legs as the effects of the
1mpulslve forces. Based on inverse kinematics, the trajecto-
ries'of each joint are denved Then, using inverse dynamics,
the input'torques are calculated and the performance index
is defined in two parts, that is; the quadratic-form of the
_input. torques: and the effects of impulsive forces at the
moment: of sw1tch1ng legs_ For the optimization algorithm,
the SQP method is used. Usmg these formulations;:the
optimal - trajectory -of a blped locomotlon machme is
obtained. \ i :
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