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Abstract—The design of the controller. of-a- two—whee]ed mobile robot is: usually based on:a
kinematical model.-The kinematical model is-derived under the.assumption that the. wheels.do-not
skid or float. However in the real world, wheels may. skid on the ground or float away from the ground
due to the rotatronal motion of the body ThlS paper analyzes the effects of the skid and the ﬂoat on
the robot with- a controller desrgned based on ‘the kmematlcal model — by the use of the Lyapunov
control method.” Numerical simulations are carried out based on the dynamic model including the
translational and rotational motron of the body, and then experiments are performed using a hardware
model. -

Keywords: Non-holonomic: system; kinematic model; -dynamic: model;: Lyapunov: control;:.experi-
ments.

1. INTRODUCTION

One of the basic functions of a robot is mobility and mobile robots have mechanisms
such as legs or wheels: to realize the mobility. For this kind of robot, the motion
~can be determined by the kinematic constraints between the degrees of freedom of
motion of the mechanism. For a wheeled robot, when the wheels do not skid or
float, the motion is determined by the angles. of rotation of the wheels. This kind
of dynamic system is called a non-holonomic system. The controller for a non-
holonomic system can be designed based on the kinematic constraints. A wheeled
robot is a non-holonomic system and the controller for the wheeled robot can be
designed based on the kinematic constraints.  -A wheeled robot does not always
satisfy the kinematic constraints. The wheels often skid on the ground or float away
from the ground according to the rolling motion of the body. When the motion
controller for the swheeled: tobot :is'designed based -onthe kinematic - model, it is
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important to examine the dynamic effect of the motion, the skid and the float of the
wheels.

Several controllers for a two-wheeled mobile robot have already been proposed.
Those controllers are designed based on a kinematical model and are classified
as time-varying controllers and discontinuous time-invariant controllers. Time-
varying controllers was originated by Samson [1]. Sgrdalen and Egeland [2] and
M’Closkey and Murray. [3] proposed non-smooth time-varying controllers which
provide exponential rates of convergence. Discontinuous time-invariant feedback
controllers have been proposed, such as the controller proposed by Khennouf and
Canudas de Wit [4]. Astolfi proposed a method of designing a controller by
transforming an original system through a non-smooth coordinate transformation
and desrgnmg a smooth time-invariant controller for the transformed system [5, 6].
The controllers provide exponential rates of convergence.

On the other hand, some experiments have been performedto check the robustness
of the controller [7-9]. Astolfi has performed an experiment for a two-wheeled
mobile robot:-with a-discontinuous controler: [6].:-M’Closkey and Murray have
performed an experiment for a mobile robot towing a trailer with a time-varying
controﬂer [10]. In these experrments the robustness agamst measurement noise or
model errors in the kinematic model is checked There have. been few investigations
which take account of the skid and the float of the Wheels to check the vahdrty of
the kinematic model. : ~

In this paper, we design a controller for a two- wheeled mobrle robot based ona
kinematical model, and check the effect of the skid and the float of the wheels on
the control performance by numerical simulations and experiments. The controller
is designed by extending the Lyapunov method. First, we define a positive-definite
function (Lyapunov function) which is minimized at the desired point. Then, we
construct a tensor by superposing an asymmetric tensor on a symmetric positive-
definite tensor and design the control input by multiplying the gradient vector of the
Lyapunov function by the tensor. The designed controller is a discontinuous time-
invariant feedback controller.” Experiments are carried out to check the dynamic
effect of the motion, the skid and the float of the wheels on the control performance
The paper is orgamzed as follows. We derive a dynamic model of a two- wheeled
mobile robot.” This model 1mphes the translational motion with 3 d.o.f. and the
rotational motion with 3 d.o.f. of the body, and also 1mp11es the effect of the skid
and the float of the wheels. The dynamic ‘model is transformed into a kinematical
model under certain assumptions. Then, we design a controller with the kinematic
model and analyze the behavior of the controlled system by numerical simulations
based on the:dynamic model-and experiments:

2. A DYNAMIC MODEL OF A TWO-WHEELED MOBILE ROBOT

We consider a symmetrical two-wheeled mobile robot composed of three rigid links,
the body and two wheels, as shown in Fig. 1. We that a rigid bar is attached on the
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Figure 1. Schematic model of a two-wheeled mobile robot.

front of the body so that the body is kept horizontal on the ground and also assume
that the rigid bar slips smoothly on the ground. Each wheel is driven by its own
motor torque and touches the ground at a point. Frictional forces act on the points
of the wheels. We will derive an equation of motion of the two-wheeled mobile
robot. The model implies the translational motion with 3 d.o.f. and the rotational
motion with 3 d.o.f. of the body and the rotational motion with 1 d.o.f. of each
wheel.

The body, the left wheel and the rlght Wheel are labeled as link 1, 2 and 3. We
introduce a set of unit vectors {a @} = {a (0)a§0)ag0)} fixed in an inertia space and
a set of unit vectors {a®} = {a(’)a(l)a(l)} fixed in link i. The origin of {aV} is
the total mass center of the three links and the ongln of {a(’)} is the mass center of
the link i (i = 2 3). The dlrectlon of a 1s toward the front of the body and the
direction of a3 is toward the top of the body ‘The direction of az) (i =1273)
coincides with the direction of the rotation axis of the wheels. Using these sets of
unit vectors, we define the followmg column matnces ‘

0 0) (0

@) = [am (>}<>]

(1 1 1
@ = [aPaPal’] »
{ T . :
[a®] =[a§”a§”ag’)] G =2,3).

We introduce the followmg vectors:

w®D:  angular velocity of {a®} with respect to {a(l)}
kD = (g0 gD

r:  position vector from the or1g1n of {a(o)} to the origin of {a‘V}
ri — [a(O)]T H :
r@:  position vector from the orlgm of {a(l)} to the origin of {a®'} (i =2,3)

r® = [a OO,
where the equation b = [aV17b defines b as the expression of the vector b in the
frame {a@”}. The following coordinate transform matrices are defined:
A®D: g coordinate transform matrix from {a®) to {a®}.

We express the orientation of {a(V} with respect to {a®} as Euler 1-2-3 angles
6D and the orientation of {a”’} with respect to {a(l)} as Buler 1-2-3 angles 6®
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(i = 2, 3). We introduce the state variables as follows:

s [,;(I)Ta)(l,O)Tw(Z,l)Tw(S,I)T]‘ 1)
When the variable: |
oT _ [f(l)T@(l)T@(Z)T@\(E])T]7* : )
is also introduced, we obtain::
x =56, ‘ 3
where: o ‘ o
T S0 00
|0 S6)s:08 ”) 00
o 0 10|
0 S | ST e R |
0039 0 0
$2(0) = SER S
s smG O A
St b ] kcos;@ ,sin@_. 0
S3(0) = | —sin@ .cosf. O |, .
Lo o 1]
I: 3x'3un1tmatnx;~\, ' e
0: 3 x 3 zero matrix. :
The kinetic energy T of the total system is expressed as:
2T = xTHT (LML + ) Hx, )
where: » - ; k ;
0o 0 0 07
N ALO) 0 00 UL AP
L=]400 gen;@ ¢ g| )
AGD  AGDF® g o ‘
TT0 00
0L .0 0| o
0 AGD 0 I
0 0 0 o
0 0 N IE m(3)1‘ : :
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00 0 O
0JD 0 0
00 0 J®

and we use the following quantities:
m@: mass of the body,
m®: mass of the wheel i, m® =m®, ‘
JO: inertia matrix of the body about the origin of {a’} expressed in the
frame {a"}, :
J@: inertia matrix of the wheel i about the origin of {a¥} expressed in
the frame {a®} (i =2, 3).
For a vector k7 = [hy, hy, h3 ], a matrix h is defined as follows:
- { 0 hy  —hy j|
" h=|—hs 0 hy .
hy —hy 0

The generalized momentum L for the state variable x is computed as:

o
i - LO :<£)T+(-81)
@ dx axT
L® |
=H"(L"ML+ J)Hx. 9

The components of L are physically interpreted as

L©:  translation momentum of the total system expressed in the frame

A {a®)} ;

L®:  angular momentum of the total system ab()ut the or1g1n of {aV}
expressed in the frame {a'V}

L®:  angular momentum of the wheel i about the origin of {a®} expressed
in the frame {a®} (i = 2, 3). ‘

Using L, the equation of motion is derived as follows:

iL+qi=6 T (10)
where: o
0 0 0 0
0 LOT 0 0
Q= 0 @ 0 (;)(2,0)T 0 v (11)
0 0 0 GOT | ‘

and G is a generalized force expressed as:

6T = [6;<0>T 000 GOT é<3>f], | (12)
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GOT = (m + m(Z)‘;L m[0,0, gol,

GOT = [+ l(l) Tz(l)?l'zft)] (=2,3),

where gg is the gravity force acting on the unit mass and r.({)ais torquetto drive the
wheel i. st :

Two types of kinematic constraints for the system are con51dered One is the
constraint that a-wheel or the bar on the body does not float away from the ground.
We express this type of constraints as @ = 0. The other is the constraint that a
wheel does not skid on the ground. We express this type of constramts as’ lI/ 0.

~ ; w”)(e X

W ran T ; :

| t_q§3k2t)(9)\ kt]j(z)(g x) : SR
@(3)(9) ! L | s X
3 (3)(0 X)

If the constraints are satisfied, the constraints and the equation of motion (10) are
put together by the method of Lagrange undetermmed multiplier:

L+ol= G+ (ETS™ ) r T KAq,, (14)
where: SO T D S e
0P KT - BlI/
89 » 3x
and I'p and Ay are Lagrange undetermined multlphers The motion of the

- two-wheeled mobile robot is determined by the equation. of motion (14) and the
constraints (13). ... i .

ET = (15)

3. DESIGN OF A CONTROLLER
3.1. Basic equatlon for the deszgn of a controller Y

We assume that the wheels and:the bar do not ﬂoat away from the ground and that
the wheels of the two-wheeled mobile robot do not skid at all. Then, translatlonal ‘
velocity u; and angular velocity u; of the mobile robot are determined by the

‘ followmg kinematic relationship: ‘

i D2 D262 6
Uy D/R D/R é(3)
where D is the radius of each wheel and Ris the dlstance between the two wheels.
We consider the following feedback law of the torque 1:2 ) to the wheel i

@ 9(2) = D/2 “ D) iy ; S R
[(3)} Kt<[0(3):| [ D/R D/R:I I:LA‘;:l : an
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Figure 2. State variables, z1, z2 and 0, and inp‘ut‘s‘, uy aidduz, of a two-wheeled mobile robot.

where K, is a constant, and #; and i, are given reference velocities. When the
feedback gain K, is large, translational velocity #; and angular velocity u, of
the mobile robot follow the reference velocities quickly. In that case, we assume
that translational velocity #; and angular velocity u, of the mobile robot can be
arbitrarily manipulated and regarded as the control inputs of the system. Under
this assumption, the motion of the two-wheeled mobﬂe robot is determmed by the
following equation der1ved from (13) and (14):+ : SRR

Bt b 0 s B (I8
ar ! | N (18)

o lat cosQO"“
Cz=|z|.B=|sind 0|, u= [”1}

L | 01 fug
where, as shown in Fig. 2, the state of the two-wheeled mobile robot is expressed
in terms of the position of the mobile robot on the plane, z; and z,, and the angle
0 between the current direction of the mobile robot and the positive direction of the

71 axis. The desired point is set to the origin. It is well known that this system is
controllable at all points [11].

3.2. A controller based on Lyapunov control: «
We have proposed a method to design a controller for a three-dimensional two-
input non-holonomic system without drift based on Lyapunov control [11, 12]. We
introduce the following Lyapunov function: o

V()= &1+ 24 0%). B ¢ 1)
The input vector is designed as follows ;

w=ou; +Pug), - . (20)

where o and § are posmve constants:

—IBTVVf T s D@21
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Uy = ——21,BTVY, (22)
g o
107 0 1
n=[o 1) e= 5 o)
g =|BT"VV|=/(z1cos6 + z,5in6)% + 62, (23)

0 a 977
V= [ ] .
" ; 821 3Z2 20
We define:

: 1

;B VV-OatB VV__() 2l s 24)
The term U in the mput i, (21), moves the system so.that the value of the Lyapunov
function V decreases. Since the term u; is zero on the line, g = 0, the system stops
at a point on the line if the input # consists of only the term u;. While, the term u,,
in the input u, (22), moves the system so that the value of the Lyapunov function V
is constant and keeps the system away from the line, g = 0.

Taking account of the characteristics of u; and u,, it is expected that the system
with the input vector (20) moves away from the line, ¢ = 0, reduces the value of
the Lyapunov function V (¢) and converges to the origin as V — 0. With the input
vector (20), the derivative of the Lyapunov function is composed of a symmetric
and an asymmetric bilinear form in the gradient vectors. We will call the control
with this type of input an extended Lyapunov control. It is noteworthy that the
coefficient of the asymmetric matrix is determlned by Lie brackets which mdlcates
the controllability of the system ~ :

4. BEHAVIOR OF THE CONTROLLED SYSTEM

The basic equation (18) with the input (20) becomes:
d E : :
3= —aB(I +,3 >BTVV R X

Since the parameter « affects only the time scale, without loss of generality, the
paremeter « can be set to 1.0. With (25), the derivative of V(¢) is computed as:

V:—(BTVV) (1 +/8 )B vV
=—|B"VV]*<0. (26)

The equilibrium points of the controlled system (25) are the points on the line,
g = 0. From (23), the line, g = 0, coincides with the z;, axis. Equation (26) shows
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that the controlled system converges to the line. We will examine the stability of the
points on the line. Since, on the line, the basic equation (25) is discontinuous, for
the sake of analysis, we modify (25) as follows: -

; 2 ; Wl i & MRy
z= 4—B<Is - ﬂ'tanh(—)-—2—1a> B,TVV, 27)

: Where & is.a small posmve constant. Equation (27) becomes (25)as ¢ approaches
- zero. By hneanzmg (27) in the nelghborhood of the equ1hbr1um points, the stab111ty
of the system on the oM ax1s s revealed as follows -

: - b. » m
S dzoelbix /_E &= Stable focus

- /-§-< lzal <2./1+ ‘;“ <= unstable focus (28)

L |zl >2 1 +— o < unstable node.

As the result as g approaches zero, the orlgm becomes the only stable equlhbnum
- point of the system (27). Therefore the or1gm becomes the only stable equlhbnum
point of the system (25). ey : B 5 SR

The behavior of the system in the nelghborhood of the orlgm 18 analyzed in
detail [12]. First, in the region where g% < 0(,6 lzaD)s the following: approximate
solutions of the variables z and g are obtamed

1= gcos(a)cz‘ + ¢)

S
¢ =g sin(wt + @), R
7= cle—%t : . (30)
| ﬁ #2 \ C2e—2t + ___Cze ﬂt i
\/ i (31)
B=2: g= /(Br% L Cpe

where Cy, Cyand ¢ are constant, and w, = /322/ g% ; ~ ;

~When 8 < 4.0, the system satisfies that g2 < O(Blzz)) forall 1 > 0. As the time
goes on, the amphtude of oscillation: of the 1nputs u1-and u, becomes a constant, -

B2 —p),if B < 2.0 and becomes 0 if 20 < B < 4.0. The frequency of -
oscillation of the inputs, as the time. goes on, becomes large exponentially. On the :
other hand, when ﬂ > 4.0, the system can not satisfy that.g2 < O(Blzz]) for all
>0 and goes toward the region where g2 > 0(,8]22])

Next, we con51der the behavior of the system in the reglon ‘where g’ = O(Blz2l).
In the region we obtaln the equatlon for g as:

T Ciah e L
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From (32), we obtain:
g=Cie, (33)
where C3 is constant. In this case, from (33), it follows that:
ool < 0. (4

When B > 4.0, the system converges to the origin and the magnitude of the inputs
converges to 0. On the other hand, when 8 < 4.0, according to the initial value of
the system, the system cannot satisfy that g> > O(B|z»|) for all > 0 and may go
toward the region where g < O(B|z2).

As a result of the analysés; the behavior of the-controlled system is summarized
as follows. The controlled system converges to the origin. exponentially. The
magnitude of the inputs u; and u; becomes O or a constant, as the time goes on.
It should be noted that, if we set the parameter B such that 8 > 4.0, the system
converges to the origin exponentially, the magnitiade of the inputs converges to 0
and oscillation of the inputs with a high frequency can be avoided.
~ Based on the kinematic model, (18), numerical simulations were executed to
check the analysis.

Case (a): The value of the parameter B is set to 1.0. The variables z, and g behave

as thesolutions, (30):and (31). Figure 3 shows the behavior of the system

“in the z1z» plane. The amplitude of oscillation of the inputs, u#; and u>,
converges to a constant, 1.0; as'shownin Fig. 4.

Table 1.
Simulation cases (kinematic model)

o B Initial value of z7
Case (a) — 1.0 (0.5, 1.0, 0.0)

Case (b) . — 5.0 (0.5,1.0,0.0)

1.5 m —

05

22

osb—1 1 011 ]
45 14 05 0 05 1 15

Figure 3. Motion of the system in the z;z> plane [Case (a)].
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Figure 6. Time histories of u and u; [Case (b)]

Case (b): The value of the parameter 8 is set to 5.0. Figure 5 shows the motion
of the system in the z;z, plane: In this case, the system moves to the
neighborhood of the desired point after two large switch-backs, and, in
the neighborhood of the origin, converges to the origin exponentially
without the oscillation of the variables z; and 6. The time history of
variable g matches the solution, (33), very well. The inputs, «; and us,



722 T Urakubo-etal.

converge to zero and do not oscillate with a high frequency as shown in
Fig. 6.

From the above results, taking .account of the oscillation and the magnitude of
the inputs, the contro \hfce in Case (b) is prefered to that of Case (a).
Consequently, it is recommiended to set the parameter f such that 8 > 4.0.

5. NUMERICAL SIMULATIONS BASED ON A DYNAMIC MODEL AND
EXPERIMENTS

In Section 3 we designed a controlier for a two-wheeled mobile robot under the
condition that the wheels do not skid at all, and translational velocity u; and angular
velocity u, are regarded as the inputs of the system. However, in the real world, the
wheels may skid or float away from the ground if the speed of the motion is fast and
the inputs of the system may be torques to the wheels. Therefore, in this section,
we examine the dynamic effect of the motion of the system and check whether
the controller works well in the real world by numerical simulations based on the
dynamic model derived in Section 2 and experiments. Values of parameters of the
two-wheeled mobile robot are given in Table 2.

In numerical simulations, we use the input torques to the wheels described by (17)
where the input signal u(z) described by (20) is used as referenced velocities #; and
. We assume that the following frictional force acts on the point of the wheel
touching the ground. When a wheel does not skid, static friction acts on the point
and the frictional force is up to the maximum static frictional force uF, where
is a coefficient of static friction and F is the normal reaction force exerted on the
point of wheel. When-a wheel is skidding; kinetic friction acts on the point and the
frictional force k is-expressed as:

k:»«(u' ! +v)FvS,' (35)

LR
where p is a coefficient of kinetic friction, v is a coefficient of viscous friction and
v, is the velocity Vector of the point of wheel touching the ground. The parameters,
w, @' and v, are set to 0.86, 0.70 and 6 8 s/m respectwely, by preliminary
measurements. :

In experiments, as shown in Fig. 7 the posMon and attltude of the mobile robot
on the ground are measured by a CCD camera, and the referenced velocities i
and I, are generated by personal computer.  The vision system using the CCD
camera provides position: and attitude. of the-robot-at-a-rate of :30-Hz. The range
of view is about 2.2 m-x 1.6-m and the measurement error in the position is less
than about 2.0 c¢m. Each wheel is driven by a DC motor of which the rotational
velocity is controlled by a PWM signal without using a feedback control. We adjust
the parameters ‘K in (17) and o in:(20):so that'the speed of the motion of the body
in-numerical simulations:is consistent with-the one in experiments::
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Table 2.
Values. of system parameters

Main body length 25 (cm)
width 15(cm)
" “height 6.5 (cm)
" mass 1.48 (kg)
Wheel “diameter 6:5(cm)
mass 0.081 (kg)

pos:tlon att!tude

@ CCD camera

controller

mobile robot

: ( ; V velocuty command

()

Figure 7. The architecture of the hardware eqﬁipment. (a) Total system. (b) Mobile i_ro'b"ot.

We executed numerical simulations based on the dynamic model, (13) and (14),
and experiments in three cases, Case A, B and C. Initial values of the state variable z
and the parameters & and 8 in (20) are summarized as in Table 3. As the parameter
o becomes large, the referenced velocities i1 and 1, are larger and the dynamic
effect of the motion of the system becomes more crucial. The simulation results are
shown in ‘Figs 810 where the solid line shows the trajectory of the system in the

2127 plane in a numerical simulation based on the dynamic model and the dashed
line shows the trajectory in an experiment. The results are summarized in Table
4, where T, is the time when the robot reached the first switch-back pomt from
the initial point in numerical simulations and 7 is the time in experiments. These
times imply the speeds of the motion of the body in numerlcal simulations and in
experiments.

In Case A, smce ‘the motion of the system is slow, the wheels do not skid at
all and the bar on the body or the wheels do not float away from the ground. In
Fig. 8, the dash-dotted line shows the trajectory of the system in the z;z; plane in
the numerical simulation based on the kinematic model. The error in the trajectories
of the two types of simulation arises from the force of inertia in the dynamic model
and depends on the delay time in the loop, (17). The trajectory of the system in



724 s dviees T Urakubo et:als

Table 3.
Simulation cases (dynamic model)

o (e - Initial value of 77
Case A 0.175 5.0 (0.0,1.0, —1.0)
Case B 0.3, 5.0 0.0, 1.0, —1.0)
Case C 0.42 5.0 (0.0, 1.0, —1.0)

Table 4.
Results of numerical simulations and experiments

T,Is]  Tels]  Skid  Float  Behavior

429 430 1o no ~ converge to the origin
2.34 2.36 no yes converge to the origin
1.78 1.80 no yes converge to the origin

L : . L

0.5 0 05

Figure 8. Motion of the system in the zjzp plane (Case A) kinematic model (dash dotted) dynam1c .
model. (solid) and experiment.(dashed). : . JET .

the experlment shown by the dashed line agrees well w1th the one in the s1mu1at10n

s In Case B, the motion of the system is faster than in Case A As shown by the
sohd line in Fig. 9, when the system performs the first switch-back near z; = 0.54,
it reaches: further in the negative direction of the z, axis than in Case A. This is
the effect of the force of inertia. The effect also appears in the experimental result
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T T

Figure 9. Motion of the system in the 71z plane: (Case. B)::dynamic model (solid)-and expenment
(dashed).

which is shown by. the .dashed line.. Moreover,-in. both the numerical simulation
based on the dynamic model and the experiment, the bar attached on the body floats
away from the ground: near the 1n1t1a1 point. In the numerical simulation, the bar
is floating while the system goes ahead about 0.3 cm in the forward direction from
the initial point. In the experiment, the bar is floating while the system goes ahead
about 6.0 cm. These results differ in. degree but both show that the dynamic. effect,
the float of the bar, happens as the motion of the system becomes faster.

In Case C, the motion of the system is faster than in Case B. In this case, the effect
of the force of inertia. is larger than in Case B. When the system performs.the first
sw1tch back near z; = 0.55, it reaches further in the negative direction of the z,
axis.than in Case B. Moreover, the bar attached on the body floats away from the
ground near the initial point for a while. In both the numencal 31mu1at10n based on
the dyna;tmc model and the experiment, the bar is ﬂoatmg Whlle the system- goes
ahead about 40 cm in the forward direction from the initial point, Wthh is shoWn
by the dotted line in Fig. 10. _

From the above results, if the value of the parameter « is smali 1t is proper to
design the controller based on the kinematic model. However, as the value of
the parameter o becomes larger, the difference between the real motion of the
controlled system and the motion of the system in the kinematic model is more
remarkable because of the.effect of the force of inertia.-Nevertheless; as shown by
the above numerical simulations and experiments, the dynamic effect fades out as
time advances and the system moves toward the desired state.  The following two
reasons why the designed controller (20) is robust against such dynamic effect may
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Eost |
NN
0 - Sl .
~0.5 0 0.5
z [m]

Figure 10. Motion of the system in the 71 z» plane (Case C): dynamic model (solid) and experiment
(dashed).

be considered. One is that the controller is designed based on Lyapunov control
by using the Lyapunov function described by (19) and prevents the system from
diverging further from the desired point. The other is that the controller is a state
feedback one and makes the system go toward the desired point from any initial
point. From a practical point of view, it is recommended to set the parameters of
the controller (20), o and B, as follows. First, parameter § should be determined so
that the controller generates an acceptable path of the robot in the z;z, plane based
on the kinematic model. In order to avoid oscillation of the inputs and make the
magnitude of the inputs converge to zero, parameter 8 must satisfy 8 > 4.0. Next,
the parameter « should be determined so that the real motion of the system is not
remarkably different from the motion of the system based on the kinematic model.
The dynamic effect which causes the difference depends on coefficients of friction;
and the parameters of the robot such as inertia and mass. Therefore, the parameter
« should be determined according to the coefficients, the parameters and the initial
values of the system.

6. CONCLUSIONS

In this paper, we designed a controller for a two-wheeled mobile robot - and
analyzed whether the designed controller works well in the real world by numerical
simulations and experiments. In the real world, the wheels may skid on the ground
or float away from the ground according to the rolling motion of the body. We
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derived a dynamic model of a two-wheeled mobile robot and transformed it to a
kinematic model under certain assumptions. Then, we designed a controﬂer for
the kinematic model by extending Lyapunov control and verified that the designed
controller works well in the real world by numerical simulations based on the
dynamic model and experiments.
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