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Motion Control of a Nonholonomic System Based
on the Lyapunov Control Method

Kazuo Tsuchiya,* Takateru Urakubo,” and Katsuyoshi Tsujita*
Kyoto University, Kyoto 606-8501, Japan

A new design method of a feedback controller for nonholonomic systems based on Lyapunov control is presented.’
In Lyapunov control, the control input is obtained by multiplying the gradient vector of the Lyapunov: funiction
by a tensor. The main contribution of our methed is that this tensor is composed of two components, one of which
is a negative definite symmetric tensor and the other of which is an asymmetric one. As a result, the goal point
in the state space of the controlled system becomes the only globally stable equilibrium point, and exponential
convergence to the goal point can be achieved. The proposed method is applied to:a two-wheeled mobile robot; and
the effectiveness is confirmed by numerical simulations. -

Introduction

HE motion control of a nonholonomic system has been focused

on by many researchers. The motion control of a two-wheeled
mobile robot is a typical terrestrial application, whereas typical ap-
plications in space include the attitude control of a rigid spacecraft
with two reaction wheels and the motion control of a planar space
manipulator composed of three links. In nonholonomic systems,
there exist constraints that are not integrable, for example, a no-slip
condition for the wheels of the wheeled vehicle, the law of conser-
vation of angular momentum for a space robot, and so on. Although
this class of nonlinear systems are not controllable locally, they
may be controlled globally by exploiting the constraints. They can
not be controlled with the method of linear control theory, however,
because they are not exactly linearizable.! Moreover, they can not
be stabilized to an equilibrium point by any smooth state feedback
comntrol, even if they are controllable globally.?

Therefore, it is difficult to design a feedback controller that sta-
bilizes a nonholonomic system to an equilibrium point, and the re-
search on this problem has been extensive. The controllers that have
been proposed thus far are classified as time-varying controllers®~®
and discontinuous time-invariant controllers.”~® Time-varying con-
trollers were originated by Samson.> Pomet proposed a method of
designing this type of controller by using a time-varying Lyapunov
function.* Their controllers are smooth time-varying controllers, but
the rates of convergence are not exponential. Sgrdalen and Egeland®
and M’Closkey and Murray® proposed nonsmooth time-varying
controllers that provide exponential rates of convergence.

On the other hand, discontinuous time-invariant feedback con-
trollers have also been proposed, such as the class of controllers
based on the idea of sliding mode control, proposed by Khennouf
and Canudas de Wit.” They designed the controller by combining a
linear feedback law and a discontinuous feedback law. The discon-
tinuous feedback law stabilizes the invariant manifolds formed by
the linear feedback law.” Lafferriere and Sontag proposed a method
of designing a controller by using a piecewise smooth Lyapunov
function.!® Astolfi proposed a method of designing a controller by
transforming an original system through a nonsmooth coordinate
transformation and designing a smooth; ‘time-invariant controller
for the transformed system.®® The controllers designed in Refs. 7
and 9 provide exponential rates of convergence.
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In this paper, we consider a thre¢-dimensional two-input non-
holonomic system that has no drift and propose a method of control
that is based on Lyapunov control. In Lyapunov control, the input
is constructed by multiplying the gradient vector of the Lyapunov
function by a negative definite symmetric tensor. However, non-
holonomic systems cannot converge to the desired point with this
type of input because there exist stable equilibrium points* other
than the desired point. On the other hand, if the input is constructed
by multiplying the gradient vector of the Lyapunov function by an
asymmetric tensor, all of the équilibrium points except the desired
point may become unstable, whereas the value of the Lyapunov
function is kept constant. In this paper, we propose a method of
designing a controller based on Lyapunov control; the input is con-
structed by multiplying the gradient vector of the Lyapunov function
by a tensor that is composed of 2 négative definite symmetric tensor
and an asymmetric tensor. The designed controller is a discontiniious
time-invariant state feedback one.-We call this method of control an
extended Lyapunov control method. A nonholonomic system with:
this type of input converges to the desired point, as long as it is
controllable. :

This paper is organized as follows: Fn'st the type of systém that
we consider in this paper is expressed in terms of differential ge--
ometry, and the basic equations for control are derived. Then we: .
explain the controller using an extended Lyapunov control method
and investigate the behavior of the controlled system. Finally, the
controller is applied to'an example, a two-wheeled mobile robot,
and the behavior of the controlled system is examined by numerical
simulations.

Formulation of the System
First, we set a three-dimensional state space, z = [21, 22, z3]" ; and
assume a Pfaffian equation on the space. The Pfaffian equation is
generally expressed as follows:

w = fi(@dz; + [(Q)dzy + f3(z)dz3 = 0- ¢)]

. where f;(z) is a function of z.. We make the following assumptions:

1) We assume that f; is finite.

2) We assume that a f, 9z}, the derivative of f for Zj; exxsts and
is finite. :

3) We assume that one of fl, fa;-0r f3 is not zero at any point. ;
Therefore, we set f3 = —1 in'this paper, without loss of generality.

4) We assume that z; and 2, can be taken as the inputs for control 3
Then, the Pfaffian equanon is rewritten as faHows e

w = fl(z)dzl + f2(Z)de oo dZ3 — U

: (2)
The distribution y for this Pfaffian equatlon is the tangent space that
is composed of the vector fields X 1 and X % :

! 821~+ fl 323 : : 2 f2 623

OF
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Lie bracket [X1X,] is computed as
e K
[XiX,] =Xi1Xs — XoX1 = L(z)a—z’l #)
3

where

dzy .0z dz3 dz3

The condition for the distribution u not to involve the Lie bracket

[X1X,] is that
L@ #0 ©

This is the condition of controllability. When this condition is satis-
fied at all points, the Pfaffian form w is converted to.a normal form
using a certain coordinate transformation!!

w =dz3 ~ z3d7z; )

Therefore, the system can be expressed by a chained form. In this
paper, we do not.assume that condition (6) is met, and we will
design a controller based on Eq. (2). Because of the assumption that
zq-and 2z, are taken as the inputs for control u; and 2, Eg. (2) can
be rewritien as a basic equation of control:

. 107
- u
—z= Bu, B=|0 11}, u:[ 1} ®)
dt Uy
frofa

Controller Based on Lyapunov Control

In this section, we design a feedback controller based on Lya-
punov control that makes the state variables z converge to the desired
point, z= {0, 0, 0]7. We introduce the following Lyapunov function:

V)= (m121 + maz; +m323) - ‘(9)

where mi, 'm,, and mj are positive ‘constants. Wlth Eq (8), the
denvatlve of Vi) along the motion path is computed as-

(VV)TBu & ”(iO)
where V = [9/821, 8/dz3, 8/3z3]". ‘ :
- We will constder a class of mput vectors expressed as follows

U= —IBTVV an

where Z.€ R?*2. The matrix ZB7 is a tensor that produces an input
vector: from the gradient vector of the Lyapunov. function. Equa-
tion (10) can then be expressed in the bilinear form in the gradient
vectors, nhe

V= (VV)TgVV W
where G= —BZBT € R3*% In the following, we will construct the
tensor Z by putting a symmetric tensor and an asymmetric tensor
together (an eéxtended Lyapunov control: method). First, we will

. investigate how the symmetry of the tensor 7 affects the behavior
of the controlled system

Case 1: Symmetric Case )
Design the tensor Z'as follows:

== %
~cTlo1} 0
The corresponding input Vector bec()mes
| w=—LB'VV  as

This is the case where the controller is destgrle(l based on Lyapunov
control Substltutmg Eq (14) in Eq (8), we obtam

z=—BI BTVV SRS

~ L(Z)é”(%—%-tfz%—ﬂ?ﬁ) ©N

With Eq. (lkS), the derivative of V (¢) is computed as
= (VV)IG,VV = —|BTVV? <0 (16)

‘where G; = —BI;BT . Because of Egs. (15) and (16), the stable equi-

librium points of the system can be seen to be the points on the line
BTVV =0. All of the equilibrium points near the desired point are
shown to be stable. By: the linearization of Eq. (15) in the neigh-
borhood of the equilibrium points, the stability of the equilibrium
points can be determined by the following characteristic equation:

A eA B =0 « an

where a; and 8; are constants depending on each equilibrium point.
In the neighborhood of the desired point, a; and B, are computed as

Cay=mi A my+ (f2 4 )M+ 0@) >0 (1)

Be = mumy + frmymy + fimims +O(z5) > 0 (19)

Therefore, all of the equilibrium pomts in the netghborhood of the

desired point are stable. Thus, the system may be trapped ina pomt
other than the des1red point..- :

Case 2: Asymmetric Case
Design the tensor Z as follows:

JREERR N O ) TR | -
z=ﬁ1a=ﬁ[_1k0] | (20

where ﬂ isa scalar coefﬁc1ent The correspondmg input vector be-
comes

u= —BI,,BT‘VV‘ 2D

‘Substttutmg Eq. (21) in Eq. (8), we obtain

= —-ﬂBI BTvy “(22)

With Eq (22), the derivative of V(2) is computed as

V= ﬂ(VV)Tg,,VV ~0 ; | (23)

where G, =—BI,B T .In thlS case, the state variables z are restricted

toa sphere, thatis, V (z) = Vy, where Vj is the value of the Lyapunov
function determined by the initial state of the system. The equilib-

- rium points of the system in the symmetric case are:also equilibrium
- points inthis case.. However, in this case, all of the equilibrium points

of the system except the desired point may. become unstable. To as-
sess their stability, we first linearize Eq. (22) in the neighborhood
of these points. Then we can determine the stablhty of these points

“bythe followmg charactenstrc equatton

ﬁaax+ﬁﬁa_0 | @
where e ‘
Ba=8s S (25)

It B is chosen such that sgn(ﬁ) = —sgn(e, ), the equilibrium points
of the system become unstable as long as a; # 0. On the other hand,

o, = zzm3L(2),

~the desired point does not become unstable because o, =0 at the

desired point.
Based on the preceding results in the following, we will desrgn
the tensor Z as follows

=a(l; +Bl, ) S (26)
where o and ﬁ are scalar coefficients. The input vector becomes
u=—al,+pL)BTVV @

Coefﬁcrent aisa posmve constant and affects only the timescale of :
the motion of the controlled system. Without loss -of generality, we
can set the coefﬁcrent o to unity. The coefficient ,8 is set to

=Bl @®
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where
g=|BTVV]| i ‘ 29)
Function h(g) is'a smooth function such that
RO =0, k(@) >0 for g>0 (30
BaSic equaﬁons then become 3
&= —Bll, - Blea/h@ILIBTVV 6D

where. ‘we define - [1/k(g)]- BTVV =0at BTVV =0. With
Eq (31), the derivative of V(t) is computed as :

(VV) {gs

The input vector of Eq. (27) is an extended form of the mput vector

of Eq. (14) that is designed based on the Lyapunov control; the input

vector defined in Eq. (27) contains a symmetric and an asymmetric -

matrix; and, as-a‘result, the derivative of the Lyapunov function is
also composed ofa symmetric and an asymmetric bilinear form in
the gradient vectors (an extended Lyapunov control method).

In the next section, we will analyze the behavmr of systems with
this type of controller. : :

Behavior of the Controlled System
The equilibrium pointsof the controlled system shown in Eq. (31)
are the points-on the line' BT VV =0. Because Eq: (32) shows that
the controlled system converges to this line, we will examine the sta-
bility of the pointsthat li¢‘on it. On this line; the basic equation (31)
is discontinuous; and, therefore, to be able to perfonn the- analysxs
we modlfy Eq. (31)-as-follows:

=——B{1 ~ﬂtanh[h(g)/€] [wa/h(g)]l }BTVV : (33)/

;Equatlon (33) approaches Eq. (31).as e is taken to zero. By the
linearization of Eg:-(33) in the:neighborhood-of the equilibrium
points; the: stability -of the -equilibrium: points. can be determmed
using the following characteristic equatlon :

Mi2 4 [o = (a2 /I + [1+ (/) ]p} =0 6o

~The‘eigenva1ues of Eq. (34)are given as ;
h= o - 8/9)]
el /AT e/} [ o

(39

where parameters a;; Bsyand a; are given by Egs: (18), (19), and
(25). The two eigenvectors corresponding to the nonzero-eigenval-
ues lie in-the column space of matrix B and determine the stability
of the equilibrium points. The condition that the-equilibrium points
are stable is that the real parts of both eigenvalues are negative, that
is; ~ ; =% i i

% ( 2/€)>0 Bs >0(36)
We rewrite condmons in Eq (36) as ] : ‘ S
: sz(Z)2 < E%/‘ﬁmgvs ﬁs‘> 0. 37

Points on the line BT VV. = 0 that satisfy this condition are stable
equlhbnum points. We consider the region on the line where an
equilibrium point 1§ stable:

1) First we cpnsxder case 1, the case where L (z) # 0 at all-of the
points on the line: In this case, from Eqs.-(18) and (19); the points on
the line near the origin satisfy a; >0 and Bs > 0.0n the other hand,
only the points on the line near the origin satisfy the first condition
of Eq. (37) because e is small and L(z) £0. As a result only the
ethbnum points near the origin are stable, and ase approaches
zero, the origin becomes the only stable equilibrium point.

ﬂ[aa/h(g)]ga}VV = ~|BTVV|2 < 0 (32);

23

BTVV =0

L(z) = 0

stable equilibrium points
s

Zy

Fig: 1- . Stable equilibrium pointsof the cohtmlled system(case 2, where
€—0). .

22

Fig. 2 State variables: Ziy: z;,, and 0 and mputs uy and u,, of a two-

wheeled mobxle robot

2)-Next we consuier case 2 the case where L(z) 0-at some
points on the line. In this case, theré may be a point where the line
BTV V =0crossesthe plane L (z) 0. If one of such points satisfies
the conditions a; >0 and B, > 0; a region of equilibrivm- points
satisfying condition (37) exists near that equilibrium pomt because

‘the value of L (z) is small. All of the equilibrium points in theregion

are stable. From Eq: (37), as the parameter ¢ approaches zero, the
region shrinks until only the point where the line BTVV: =0crosses
the plane L (z) = 0 becomes the stable equilibrium point. As aresult,
in this case; there may exist stable equilibrium points besides the
origin, where the system is not controllable (Fig: 1).

From the preceding analys1s when the system satisfies the con-

‘trollablhty criterion at all of the equlhbnum points, the controlled

system converges to. the desired point. However, when equlhbnum
points where the system does not satisfy the controllability criterion
exist; the controlled system may be trapped in-an equlhbrmm point
that is niot the desired pomt 2 :

Example. Two-Wheeled Moblle Robot
In this section we apply the extended Lyapunov control mettiod

10 an example, a two-wheeled mobile robot, and check the behavior
“of the system by numencal simulations. ‘We set the. parameters of

the Lyapunov. function glven in Eq. (9); mi, my; and mis; to. 1. 0.
“'As shown'in Fig. 2, the state of a two-wheeled mobile robot:can

be expressed in terms of the ‘position of the mobile robot on the

plane z; and 7, and the angle @ between the current direction of the
mobile robot and the positive direction of the 7, axis. The inputs of
the system are translational velocity u1 and angular velocity u. The
desired point is set to be the origin. If the wheels do not skid at all,
the motion of the moblle robot can be determmed by the followmg :
equations: : . :

zi : cosB 0 S
d | e : Uy
a? 73 |= sing.. 0 [ } (38)
ke oot -

This system satisfies the condmon of the controllablhty L (z) 7é Oat
all points: S : : :
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Analysis
The inputs are assigned as follows:
u; = —(z;co86 + zysin @) — Blz,/h(g)10 (39)
Uy = —0 + Blza/h(g))(z1 cos 6 + z5 5inH) (40)

The behavior of the system is analyzed for the following two cases:
case 1, h(g) =g, and case 2, h(g) = g°.

Caf;hle basic equation, Eq. (31), corresponding to Eq. (38), is
expressed-as

Z; = —c0sB(z; cos O + z5 8in @) — B(z2/g)0cos8 - (41)

Zy = —sin6(z, cos @ + zsin @) — B(z2/2)0 sinb 42)

6 = —0 + B(z2/8)(z1 cos B + z3 sin 6) (43)

where

g = |BTVV| =+/(z; cos 6 + z, 5in )2 + 62 (44)
From Eqgs. (41-43), the variable g satisfies the following equation,
g=—g+ ﬂ(zz/gz) (25 c0s 0 — z1 8in0)(z; cos @ + z, sin 8)2

—(6/g)(z2co860 — 21 sin6)(z; cos O + zsinH) (45)

Because the variables z;, z;, 6, and g decrease with time, we can
assume in the following that they are small. )

1) First we examine the behavior of the system in the region
g > O(Bz3). Neglecting the small terms, we obtain the equations
for z; and g as

=0 -
g=—g+ ﬁ(zz/gz)(zz cos 8 — z;5in8)(z; cos O -+ z, sin 6)2

<—g+Bzi <0 ; (46)

Equations - (46) show that the system moves:into the region
g <0(Bz).

2) Next, we examine the behavior of the system in the region
g < O(Bz%). When the small terms are neglected, Egs. (41-43) and
(45) become

z1 = —B(22/8)6,

2y =0 6 = B(z2/8)z1, g=0

4N

where variable g is approximately expressed as' g =/ (zf + 62).
Equations (47) show that the variables z, and g are constant whereas
the variables z; and 9 oscillate. The variables z; and € are expressed
as

2y = gcos(w.t + ¢), 0 = gsin(wt +¢)  (48)
where w, = Bz,/g and ¢ is a constant. Substituting Eqgs. (48) into
Egs. (42) and (45), averaging them with the period 27 /w,, and
neglecting smaller terms, we obtain

fr=—(B/2)gz2 (49)
g=-g+B3[2=—g+s (50)

where !
8:(z2) = (8/2)73 1)

Equations (49) and (50) show: that |Z,] <« |g]. Therefore, variable
g converges to:g; exponentially, whereas-variable z, is constant.
Substituting steady-state solution g, of variable g into'Eq. (49), we
obtain

7 = — (B2 /02 52)

From Eq. (52), we have

|zl = 1// (B2t +C (53)

where C is a constant. By the substitution of Eq. (53) into Eq. (51),
the corresponding solution of variable g is expressed as

g = B/(B*t+20) (54)

By the use of Egs. (53) and (54), variables z; and 6 are expressed as

z1 = [B/(B* +2C) ] cos(y/28% + 4Ct + ¢)
9 = [B/(B*t + 2C)]sin(y/28% + 4Ct + ¢) (55)

Expressions (55) show that the amplitude of oscillation decreases as
O(1), whereas the frequency of oscillation increases as O(t'/2):
On the other hand, input u decreases as @(z /%) and tends to zero
as ¢ — 00.

Case‘Z
The basic. equation, Eq. (31), corresponding to Eq. (38), is
expressed as

71 = —c08 0(z1 cos 0 + z; sin ) — ﬁ(zz/gz)G cosf@  (56)

7y = ~sinf(z; cos b + z3sinf) — (z2/g?)0sind  (57)

6 = =0 + B(22/8%) (21 cos 0 + 2, 5in ) (58)

From Eqgs. (56-58), the variable g satisfies the following equation:
g=—g+ ﬁ(zz/g3)(zz cos @ — z; sin)(zq cos b + z; sin@)?

—(B/g)(zac088 — z1 5sin0)(zi cos 6 + z3 sin ) (&5))

We also assume in the following that the variables z; 23, 6, and g
are.small: :

1). First we examine the behavior of the system in the region
g% < O(B|z3]). In this region, when the small terms are neglected,
Egs: (56-59) become
71 = —B(22/8%)9,

z3 =0,

9=5(22/82)Z1, g=0
(60)

Equations (60) show that the variables z, and g are constant, whereas
the variables z; and € oscillate and are expressed as

71 = g cos(@eat + ¢2), 6 = gsin(wyt + ¢2) (61)
where w,, = Bz,/g* and ¢, is-a constant. Substituting Egs. (61) into
Egs. (57) and (59), averaging them with the period 27 /w.;, and
neglecting smaller terms, we obtain

723 =—(B/2)z3 (62)
§=—g+B5/2% (63)
From Eq. (62), we have
z; = Cre B! (64)

Substituting Eq. (64) into Eq. (63), we obtain -

for B+#2, g =+/Coe™® +[B/2— P)IC}e P
for =2, g =+/(BCH +Cy)e ™ (65)

where C; and C, are constant. When § < 4.0, the system moves
within the region g2 < O(B|z,|) for all £ >0 and converges to the
origin.-On the contrary, when B > 4.0, the system cannot satisfy
the condition that g2 < O(B|z;]) for all ¢ > 0 and may go toward the
region where g% > O(B|z,|) with time. In this region, g2 < O(B]z2|),
the inputs u; and.u, behave as follows: Because the amplitude of
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oscillation of the inputs is O(Bz,/g) from Egs. (39) and (40), as
time advances it approaches a constant «/[(2 — )] if 8 <2.0 and
approaches 0 if 8 > 2.0. On the other hand, because the frequency
of oscillation of the inputs is O(Bzy/ g2) from Egs. (39) and (40),
it increases exponentially:if 8 < 4.0 and decreases exponentially if
B > 4.0 with time.

2) Next, we examine the behavxor of the system in the region
22> O(B]z,]). Neglecting the small terms, we obtain the equation
for g as

; g=-g (66)
From Egq. (66), we obtain
g =Cse™’ 67)

where Cq is constant. When 8 > 4.0, as stated previously, the system
moves. from the region g < O(B|z1|) to this region, g2 > O(B]z3]).
Then, as a result of Eq. (67), the system converges to the origin
in this region. On the contrary, when B < 4.0, according to the ini-
tial value of the system, there are cases where the system stays in
this region or moves to the region g2 < (O(B|z,]). However, in both
cases, the system converges to the origin. In this region, because
Blzz] < O(e~%), the magnitude of the inputs #; and u, converges to
0 using Egs. (39) and (40).

The motion of the system for the case where i (g) = g2 is summa-
rized as follows: The behavior of the system is different according
to the value of the parameter 8 and initial conditions. However, the
system converges to the origin and the magnitude of the inputs ap-
proaches 0 or a constant with time. Note that if we set the parameter
B such that g > 4.0, the system converges to the origin exponen-
tially, the magnitude of the inputs converges to 0, and oscﬂlatlon of
the-inputs with a high frequency can be avoided.

Numerical Simulations
Case 1

Numerical simulations were executed for the following two cases,
case 1a and case 1b (Table 1). In case 1a, the value of the parameter
B is set to 1.0. Figure 3 shows the behavior of the system in the z;z;
plane. Figure 4 shows the time hlstory of variable g. The dashed line
in Fig. 4 is a line proportional to ¢ ! as shownin Eq. (54). Variable g
decreases along this line, as the analysis has revealed. In case 1b, the
value of the parameter 8 is set to 10.0. Figure 5 shows the motion
of the system in the 21z, plane. In this case, the system moves to the
neighborhood of the desired point after three large switchbacks; and
in the neighborhood of the origin, the system behaves in the same
way as in case la.

15 T T T 1

05

%

05 I R S N
45 1 05 0 05 1 15

Fig. 4 Time history of g (case 1a).

Table 1 = Simulation cases
Case h(g) B Initial value of z7

la g 1.0 (0.01, 1.0 0.01)
1b g - 10,0  (0.01,1.0,0.01)
2a g* 1.0 (0.51.0,0.0)
2b g2 50 (0.5,1.0,0.0)

15 105 0 05 1 15

T T T T T T TS
0.1 - 5
. 3 ]
0.01 - ==
0.001 | SO R T E N N N N |
012 3 45 6 7 8 9 10
t
Fig.7 Time history of g (case 2a)
S T E ER T T
1
S 0B

154 -0.5 0 0.5 1 1.5

Fig. 8  Motion kof the system in the z3z; plane (case 2b).

Case 2.

We executed numerical simulations for the following two. cases,
case 2a, where the system moves.within the region g2 < @(B|z3)),
and case 2b, where the system moves from the region g% < @(8|25))
to the region g2 > O(B]zz])- In case 2a, the value of the parameter
B is set to 1.0 (see Table 1). Figure 6 shows the behavior:of the
system in the z;z, plane. Figure 7 shows the time history of variable
g. The dashed line in Fig. 7 is a line proportional to e~/ as shown
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o
10 T T T T T
8| Uy —— -
6 - up === ]
4 p- -
§‘ \
- 2-\\- -
£y O-\\“
i L 1

Fig. 10 Time histories of u; and u; (case 2b).

in Eq. (65). In case 2b, the value of the parameter B is set to 5.0.
Figure 8 shows the motion of the system in the z;z, plane. In this
case, the system moves to the neighborhood of the desired point
after two large switchbacks and, in the neighborhood of the origin,
converges to the origin exponentially without the oscillation of the
variables z; and 6. Figure 9 shows the time history of variable g,
which matches the solution given in Eq. (67) very well. Note that
the inputs u, and u, converge to zero and do not oscillate with a
high frequency, as shown in Fig. 10.

Conclusions

In this paper, we proposed a discontinuous state feedback control
law for a three-dimensional two-input nonholonomic system with-

out drift, based on an extended Lyapunov control method. When
the system satisfies the condition of the controllability at all of the
equilibrium points, the proposed controller makes the system con-
verge to the desired point. This is verified by analysis and numerical
simulations of a two-wheeled mobile robot. From a practical point
of view, note that, by choosing suitable control parameters, the con-
trolled system can be made to converge exponentially to the desired
point, and the inputs can decay to zero without oscillations.
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