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ABSTRACT 

In this paper, we discuss a motion control of a two- 
wheeled mobile robot. In the design of a controller for 
the system, a kinematic model is usually used; The wheels 
don’t skid at all and the mobile robot is regarded as a 
3-dimensional 2-input nonholonomic system without drift. 
Many controllers based on the kinematic model have been 
proposed. However, in a real world, the wheels may skid 
on the ground or float away from the ground according to 
the rolling motion of the body. Therefore, we derive a dy- 
namic model of a two-wheeled mobile robot which implies 
the translational motion with 3 degrees of freedom and the 
rotational motion with 3 degrees of freedom of the body 
and the rotational motion with one degree of freedom of 
each wheel, and then reduce the dynamic model to the 
kinematic model under certain assumptions. We design a 
controller based on the kinematic model by extending the 
Lyapunov control and analyze whether the designed con- 
troller works well in a real world by numerical simulations 
based on the dynamic model. 

1. INTRODUCTION 

One of the basic functions of robot is mobility, and mo- 
bile robots have mechanisms to realize the mobility such 
as legs or wheels. For this kind of robots, usually, the mo- 
tion is determined by the kinematic relationship between 
the degrees of freedom of motion of the mechanism; For a 
wheeled robot, when the wheels don’t skid, the motion is 
determined by the rotations of the wheels. This kind of 
dynamic system is called a nonholonomic system. A mo- 
bile robot is a nonholonomic system. For a nonholonomic 
system, the controller can be designed with the kinematic 
relationship as the state equation. From the viewpoint of 
control, a nonholonomic system has a difficult property; it 
is uncontrollable locally even if it is controllable globally. 
An effective and general algorithm to design a controller 
of a nonholonomic system has not been proposed yet. To 
control the motion of a mobile robot, a general method 
to design a controller of a nonholonomic system must be 
developed. 

The controllers which have been proposed so far are clas- 
sified as time-varying controllers and discontinuous time- 
invariant controllers. Time-varying controllers was origi- 
nated by Samson ([3]). Sordalen and Egeland ([5]), and 
M’Closkey and Murray ([s]) proposed nonsmooth time- 
varying controllers which provide exponential rates of con- 
vergence. 

On the other hand, discontinuous time-invariant feedback 
controllers have been proposed by Khennouf and Canudas 
de Wit ([2]). Astolfi proposed a method of designing a con- 
troller by transforming an original system through a nons- 
mooth coordinate transformation and designing a smooth 
time-invariant controller for the transformed system ([6], 
[7]). The controllers provide exponential rates of conver- 
gence. 

The Lyapunov control is one of the design methods of 
a feedback controller of nonlinear systems; By setting a 
positive-definite function (Lyapunov function) which is min- 
imized at the desired point and multiplying the gradient 
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vector of the function by a symmetric positive-definite ten- 
sor, the control input is designed. When the Lyapunov 
control is applied to a nonholonomic system, the controlled 
system has equilibrium points besides the desired point 
and may stop at these points. We have proposed a de- 
sign method by extending the Lyapunov method as fol- 
lows ([15],[16]); First, we define a positive-definite func- 
tion (Lyapunov function) which is minimized at the de- 
sired point. Then, we construct a tensor by superposing 
an asymmetric tensor on a symmetric positive-definite ten- 
sor and design the control input by multiplying the gradi- 
ent vector of Lyapunov function by the tensor. When an 
extended Lyapunov control is applied to a nonholonomic 
system, the controlled system doesn’t have an equilibrium 
point except the desired point and converges to the de- 
sired point. The designed controller is a discontinuous 
time-invariant feedback controller. 

On the other hand, the development of the mobile robot 
which can carry out a task in a real world is desired now. 
So far, some experiments have been performed to check the 
robustness of the controller ([lo]-[12]). Astolfi has per- 
formed an experiment for a two-wheeled mobile robot with 
a discontinuous controller ([7]). M’Closkey and Murray 
have performed an experiment for a mobile robot towing 
a trailer with a time-varying controller ([9]). In these ex- 
periments, the robustness for measurement noise or model 
errors in the kinematic model is checked under the assump- 
tion. There have been few researches which take account 
of the skid and the float of the wheels to check the valid- 
ity of the kinematic model. A mobile robot doesn’t always 
satisfy the kinematic relationship; the wheels often skid on 
the ground or float away from the ground according to the 
rolling motion of the body. When the motion controller 
of the mobile robot is designed based on the control the- 
ory for nonholonomic systems, it is important to examine 
the dynamic effect of the motion, the skid and the float of 
the wheels. For that purpose, a dynamic model of the mo- 
bile robot must be derived and the dynamic characteristics 
must be checked based on the model. 

In this paper a motion control of a two-wheeled mobile 
robot is discussed. We derive a dynamic model of a two- 
wheeled mobile robot. This model implies t,he transla- 
tional motion with 3 degrees of freedom and the rotational 
motion with 3 degrees of freedom of the body, and also 
implies the effect of the skid of the wheels. Then, we ana- 
lyze the behavior of the two-wheeled mobile robot which is 
controlled by an extended Lyapunov control by numerical 
simulations based on the derived model. As a result, at 
the neighborhood of the point where the two-wheeled mo- 
bile robot performs a switch-back, the skid or the float of 
the wheels may be brought about according to the dynam- 
ics. But the frequency of the skid or the float becomes less 
as the two-wheeled mobile robot converges to the desired 
point. Finally, the two-wheeled mobile robot reaches the 
desired point. 

2. A DYNAMIC MODEL OF A 
TWO-WHEELED MOBILE ROBOT 

We consider a symmetrical two-wheeled mobile robot 
composed of three rigid links, the body and two wheels, as 
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Figure 1: Schematic model of a two-wheeled mobile robot 

shown in Fig.1. We assume that a rigid bar is attached on 
the front of the body so that the body is kept horizontal 
on the ground and that the rigid bar slips smoothly on the 
ground. Each wheel is driven by its own motor torque and 
touches the ground with a point. Frictional force acts on 
the points of the wheels. We derive an equation of motion 
of the two-wheeled mobile robot. The model implies the 
translational motion with 3 degrees of freedom and t,he 
rotational motion with 3 degrees of freedom of the body 
and the rotational motion with one degree of freedom of 
each wheel. 

The body, the left wheel and the right wheel are labeled 
as link 1, 2 and 3. We introduce a set of unit vectors 
{a(O)} = {@&$) } fixed in an inertia space and a set 

of unit vectors {a(‘)} = {,I;)c~~;)cZ(‘) s } fixed in link i. The 

origin of {a(‘)} is the total mass center of the t,hree links 

and the origin of {u’~‘} is the mass center of the link i 

(i = 2,3). The direction of a, (‘I is toward the front of 

the body and the direction of a:) is toward the top of 

the body. The direction of CZ~’ (i = 1,2,3) coincides with 
the direction of the rotation axis of the wheels. Using 
these sets of unit vectors, we define the following column 
matrices; 

[a(O)IT = [a(o) aP) ,P)] 

[a(1)]T = [a1 a2 us ] t1, 6, ?I, 

[J’)]T = [@ a;) Q] 

We introduce the following vectors; 
Jk.l) : angular velocity of {u(~)} with respect t,o 

{u”‘} 
&JQ) = [&4]T W(k.9 

#I : position vector from the origin of {a(‘)} to 

the origin of {a(‘)} 
T(l) = [&)]T#) 

.(‘) : position vector from the origin of {a(‘)} to 

the origin of {a(‘)} (i = 2 3) 
’ .(i) = [u(l)]TrG) 

We define the following coordinate transform matrices; 
A(“?‘) : a coordinate transform matrix from 

{a@)} to {CP)} 

We express the orientation of {a(‘)} with respect to {u(“)} 

as Euler angles 6’(l) and the orientation of {IX(‘)} with re- 

spect to {a(‘)} as Euler angles 8(‘) (i = 2,3). We introduce 
the state variables as follows; 

T 
X = [ +(l)T W(l?O)T pzl)T u(3,1)T 1 . (1) 

When the variable, 

BT = [ r(l)T o(l)T @IT 8(3P] , 
(2) 

is introduced, we obtain 

x=se, (3) 

where 

rI 0 0 01 

s= L 0 s3(4")Sz(Bp) 
o 0 

y 8 

0 0 0 I 

I 

[ case 0 0 
S(B) = 

siZ8 ?I Y 1 [ cos 8 sin0 0 
S,(Q)= -sp coo"0 y 1 
Z : 3 x 3 unit matrix 
0 : 3 x 3 zero matrix 

The kinetic energy T of the total syst,em is expressed as 

2T = xTHT(kTMMi+ J)Hx , (4 

where 

r 0 0 0 01 

k= A(‘rO’ A(& 0 0 

A(%o, 0 0 1 

Ac3ro, A(3,‘)r(3’ 0 0 I 

0 0 

Jy2, 
0 (8) 

0 ;3, 

and we use the following quantities; 

m(l): mass of the body 

m(‘): mass of the wheel i , m(*) = m(‘)’ 

J(l) : inertia matrix of the body about the origin of 

{u”‘} 

J(j) : inertia matrix of t,he wheel i about the origin of 

{a(“)} 

We define a matrix h corresponding to a vector hT = 
[hl , hz , h3] as follows, 

A= 
[ 

-Oh, 
hs - hz 

hz -Oh, 2’ . I 

The generalized momentum i for the state variable z is 
computed as 

e(o) 

i = 

[ 1 ;i:; = (E)T+ (S) 
j,(3) 

= HT(LTM21i:+ J)Hx . (9) 
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The components of L are physically interpreted as 
[&Jl]r i(O) : translation momentum of the total 

system 
[&)]T L(l) : angular momentum of the total sys- 

tem about the origin of {a(i)} 

[~(~)]r e(‘l : angular momentum of the wheel i 

about the origin of {cr(‘l} 

Using 2, the equation of motion is derived as follows, 

et_ti = &, (10) 

where 

r0 0 0 0 7 

and & is a generalized force computed as follows, 

GT = [ &4’P- 0 0 0 @)T @)T] , 

(yOJT Ix (m(l) + rn@) + mC3))[0 0 
11 go] 1 

&(i)T = [,(i) ,(i) $) 
1 12 13 1 I 

(12) 

(i) . where go is the gravity acting on the unit mass and ‘T* IS 
torque to drive the wheel i. 

Two types of kinematic constraints for the system are 
considered. One is the constraint that, when a wheel or 
the bar on the body doesn’t float away from the ground, 
the height of the point touching the ground is constant. 
We express this type of constraints as I = 0. The other 
is the constraint that, when a wheel doesn’t skid on the 
ground, the velocity of the point of the wheel touching the 
ground is zero in a horizontal plane. We express this type 
of constraints as P = 0. 

If some of the constraints are satisfied, the constraints and 
the equation of motion, Eq.(lO), are put together by the 
method of Lagrange undetermined multiplier; 

e + nL = e + (ETS-‘)TrSp + Ii-A p , 

where 

ET = ?!! 
as ’ 

KT _ ?_!! 
- a2 9 

and r,, A,J are Lagrange undetermined multipliers. 
The motion of the two-wheeled mobile robot is determined 
by the equation of motion, Eq.(14), and the constraints, 
Eq.(13). 

3. DESIGN OF A CONTROLLER 

Basic Equation for Design of a Controller 

We assume that the wheels or the bar doesn’t float away 
from the ground and that the wheels of the two-wheeled 
mobile robot don’t skid at all. Then, translational velocity 
ui and angular velocity ~2 of the mobile robot are deter- 
mined by the following kinematic relationship; 

(16) 

Figure 2: State variables, zi, zz and 0, and inputs, ur and 
uz, of a two-wheeled mobile robot 

where D is the radius of,each wheel and R is the distance 
between the two wheels. We consider the following feed- 

back law of the torque 7;” to the wheel i; 

where Kt is a constant, and Qi and dz are given reference 
velocities. When the feedback gain K* is large, transla- 
tional velocity ur and angular velocity uz of the mobile 
robot follow the reference velocities fast. Then, we assume 
that translational velocity ~1 and angular velocity uz of the 
mobile robot can be arbitrarily controlled and regarded as 
the inputs of the system. Under this assumption, the mo- 
tion of the two-wheeled mobile robot is determined by the 
following equation derived from Eq.(l3) and Eq.(14), 

dz 
-=Bu, 
dt 

Zl 
z= zz 

[ 1 , B= 
e 

case 0 

[ 1 sin0 0 , u= 
0 1 

Ul 
[ 1 7J2 ’ 

(18) 

where, as shown in Fig.2, the state of the two-wheeled 
mobile robot is expressed in terms of the position of the 
mobile robot on the plane, zi and zz, and the angle 0 be- 
tween the current direction of the mobile robot and the 
positive direction of the zi axis. The desired point is set 
to be the origin. It is well known that this system is con- 
trollable at all points ([15]). 

A Controller Based on the Extended Lyapunov 
Control 

We have proposed a method to design a controller for a 
3-dimensional 2-input nonhonolomic system without drift 
based on the extended Lyapunov control ([15],[16]). We 
introduce the following Lyapunov function; 

V(z) = ~(ml.6 + m2z2” + m3232) , (19) 

where ml, mz and ms are positive constants. The input 
vector is designed as follows; 

‘(I = (Y(% + p&Z) , (20) 

where (Y and p are positive constants, 

us = -I,BTVV , 

u, = -$I,BTVV, 

(21) 

(22) 
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A=[; 71, I,=[ _9 ;] 1 

g = ]BrVV] = (zl cosB + zz sin0)2 + fP , 
v= dadT [ az, ’ dzz ’ de 1 ’ 

and h(g) is a smooth function such that 

h(0) = 0 , h(g) > 0 for g > 0 . 

We define 

LBTVV = 0 at BTVV = 0. 
h(g) 

(23) 

(24) 

(25) 

The term us in the input U, Eq.(21), moves the system so 
that the value of the Lyapunov function V decreases. Since 
the term ZL~ is zero on the line, g = 0, the system stops at 
a point on the line if the input u consists of only the term 
Us. While, the term Us in the input U, Eq.(22), moves 
the system so that the value of the Lyapunov function 
V is constant, and keeps the system away from the line, 
g = 0. 

Taking account of the characteristics of Us and u,, it is 
expected that the system with the input vector (20) moves 
away from the line, g = 0, reduces the value of the Lya- 
punov function V(t), and converges to the origin as V + 0 
. The derivative of the Lyapunov function becomes to be 
composed of a symmetric and an asymmetric bilinear form 
in the gradient vectors. We will call the control with this 
type of input as an extended Lyapunov control. It is note- 
worthy that the coefficient of the asymmetric matrix is 
determined by Lie bracket which indicates the controlla- 
bility of the system. 

4. THE BEHAVIOR OF THE CONTROLLED 
SYSTEM 

Basic equation (18) with the input (20) becomes 

dz 

t= 
-aB(I, + B$“)BTVV . 

Since the parameter (Y affects only the time scale, without 
loss of generality, the paremeter (Y can be set to be 1.0 

; for tr = at, z = -B(I, +P%Ia)BTVV . We have 

analyzed the behavior of the system (26) in [13], [14] and 
[16], setting the parameters of the Lyapunov function (19), 
ml, mz and m3, to be 1.0 , and the parameter cr to be 1.0. 

Dynamic Characteristics 

With Eq.(26), the derivative of V(t) is computed as 

$’ = -(BTVV)T(I, + /32-I,)BTVV 
h(g) 

= -]BTVVIZ 5 0. (27) 

The equilibrium points of the controlled system, Eq.(26), 
are the points on the line, g = 0. From Eq.(23), the line, 
g = 0, coincides with the z2 axis. Equation (27) shows 
that the controlled system converges to the line. We will 
examine the stability of the points on the line. Since, on 
the line, the basic equation (26) is discontinuous, for the 
sake of analysis, we modify Eq.(26) as follows; 

2 =-B(I, +~tanh (28) 

Equation (28) becomes to be Eq.(26) as E becomes to be 
zero. By linearizing Eq.(28) in the neighborhood of the 
equilibrium points, the stability of the system on the ~2 
axis is revealed as follows; 

_ stable focus 

u unstable focus (29) 

u unstable node 

As the result, as E becomes to be zero, the origin becomes 
to be the only stable equilibrium point of the system (28). 
Therefore, the stable equilibrium point of the system (26) 
becomes to be only the origin. 

We set the function h(g) to be g or g*, and analyze in 
detail the behavior of the system in the neighborhood of 
the origin. 

(1) The function h(g) is set to be 

h(g) = g . (30) 

Then, the following approximate solutions of the variables 
z and g are obtained; 

21 = gcos(f&1t+41) 1 

6 = gsin(w,rt+&) , (31) 

(32) 

P 
g= pt+2c ’ 

where C and 41 are constant, and wcr = 9. Expres- 

sion (31) shows that the amplitude of oscillation decreases 
as O(t-‘) while the frequency of oscillation increases as 

O(t$). On the other hand, input zd decreases as O(t-3) 
and tends to zero as t + co. 

(2) The function h(g) is set to be 

h(g) = g2 . (34) 

First, we consider the behavior of the system in the region 
where g2 < O(/?].zz]). In the region the following approxi- 
mate solutions of the variables z and g are obtained; 

21 =gcos(wc2t+~2), 

0 = gsin(w,:!t + 42) , (35) 

z2=Cle , 
-gt 

(36) 

{ 

p#a : g= C2e-2t + &Cfe-Pt 
1 (37) 

p=2 : g= J(pCf t + C2)ee2’ 

where Cl, Cz and 42 are constant, and wcz = 9. 

When /3 < 4.0, the system satisfies that g2 < O(/?]zz]) 
for all t > 0. As the time goes on, the amplitude of os- 
cillation of the inputs ~1 and ~2 becomes to be a con- 

stant, dm, if p < 2.0 and becomes to be 0 if 
2.0 5 ,@ < 4.0. The frequency of oscillation of the inputs, 
as the time goes on, becomes to be large exponentially. 
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Table 1: Simulation cases (kinematic model) 

h(g) o P Initial Value of z1 

Case (l-a) g - 1.0 (0.01 , 1.0 , 0.01) 
Case l-b 9 - 10.0 (0.01 , 1.0 , 0.01) 

Case (2-a) gL - 1.0 (0.5 , 1.0 , 0.0) 

Case (2-b) g2 - 5.0 (0.5 , 1.0 , 0.0) 

When p > 4.0, the system can’t satisfy that g2 < O(pIzsI) 
for all t > 0 and, as the time goes on, goes toward the 
region where g2 > O(pjzsI). As the time goes on, the am- 
plitude and the frequency of oscillation of the inputs ui 
and ug become to be small exponentially, as long as the 
solutions, Eq.(36) and Eq.(37), are proper. 

Next, we consider the behavior of the system in the region 
where g2 2 O(plz21). In the region we obtain the equation 
for g as 

b=--g. (38) 

If g2 > O(pIzzl) for all t > 0, from Eq.(38), we obtain 

g= Cse-t , (39) 

where Cs is constant. Then, since lzzl 5 0(ee2’), the 
system converges to the origin and the magnitude of the 
inputs converges to 0. According to the initial value of the 
system and the value of the parameter p, the system can’t 
satisfy that g2 < O(~I.22~) for all t > 0 and, as the time 

goes on, may go toward the region where g* < O(pIzzl). 

If the system moves into the region where g2 < O(pIzzl), 
the system behaves as the above analysis. 

As a result of these analyses, we obtain the following 
conclusion; The controlled system converges to the ori- 
gin exponentially. The behavior of the system is different 
according to the value of the parameter p and initial con- 
ditions. The magnitude of the inputs becomes to be 0 or 
a constant, as the time goes on. 

Numerical Examples 

Numerical simulations were executed to check the analy- 
sis based on Eq.(18). First, the simulation results where 
h(g) = g are shown. 

Case (l-a) ; The value of the parameter p is set to be 1.0 
and the system converges to the origin as shown in Fig.3. 

First, the system approaches the curved surface, g = &$, 
and then, converges to the origin, the desired point, d ong 
that curved surface. This result also consists with the so- 
lutions of the variables g and 22, Eq.(33) and Eq.(32). 

Case (l-b) ; The value of the parameter p is set to be 
10.0 and good performance of control is realized. Figure 
4 shows the motion of the system in .zi and zs plane. In 
this case, first, the system moves to the neighborhood of 
the desired point after three large switch-backs. Then, in 
the neighborhood of the origin, the system behaves in the 
same way as in Case (l-a); the variables zi and B oscillate 
with a high frequency. But, in practice, we may avoid this 
oscillation, if we cease control in a neighborhood of the 
desired point. 

Next, the simulation results where h(g) = g2 are shown. 

Case (2-a) ; The value of the parameter p is set to be 1.0. 
The variables zz and g behave as the solutions, Eq.(36) 
and Eq.(37). Figure 5 shows the behavior of the system 
in zi and zz plane. The amplitude of oscillation of the 
inputs, u1 and 212, converges to a constant, 1.0, as shown 
in Fig.6. 

Case (2-b) ; The value of the parameter p is set to be 
5.0. Figure 7 shows the motion of the system in zr and z2 
plane. In this case, the system moves to the neighborhood 

NN 

1.5 I I I I I 

l- 

0.5 - 

-+- 
0 _..._._____._._._ . . .._ _~________________-___ 

-05 I I I I I _.- 
-1.5 -1 -0.5 0 0.5 1 1.5 

Zl 

Figure 3: The motion of the system in zr-tz plane (Case 

(1-a)) 

1.5 I I ! I I 

l- 

NN 0.5 - 

~ : 
0 ----- ----.-.-.-.-.-.-. ._.___._._...._ _____ 

-0.5 II 
-1.5 -1 -0.5 0 0.5 1 1.5 

7-1 

Figure 4: The motion of the system in zi-zz plane (Case 

(l-b)) 

of the desired point after two large switch-backs, and, in 
the neighborhood of the origin, converges to the origin ex- 
ponentially without the oscillation of the variables zi and 
8. The time history of variable g matches the solution, 
Eq.(39), very well. The inputs, ui and us, converge to 
zero and don’t oscillate with a high frequency as shown in 
Fig.8. 

From the above results, taking account of the rate of 
the convergence of the system and the oscillation and the 
magnitude of the inputs, the control performance in Case 
(2-b) is the best. Therefore, we recommend to set the 

function h(g) to be g2 and the parameter p to be larger 
than 4.0. 

5. NUMERICAL SIMULATIONS BASED ON A 
DYNAMIC MODEL 

1.5 I I I I I 

l- 

? 0.5 - 

o- ~ : 
--.-.-.--_._._._._._. , ._._._._._._._.~.___ 

-0.5 k 
-1.5 -1 -0.5 0 0.5 1 1.5 

Zl 

Figure 5: The motion of the system in 21-22 plane (Case 

(2-a)) 
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012 3 4 5 6 7 8 910 

t 

Figure 6: Time history of ~1, ~2 (Case (2-a)) 

1.5 I I I I I 

l- 

-0.5 
-1.5 -1 -0.5 0 0.5 1 1.5 

21 

Figure 7: The motion of the system in ZI-Z~ plane (Case 

(2-b) ) 

In Sec.3 we design a controller for a two-wheeled mobile 
robot under the condition that the wheels don’t skid at 
all and t,hat translational velocity ~1 and angular veloc- 
ity u2 are regarded as the inputs of the system. But in 
a real world the wheels may skid or float away from the 
ground and the inputs of the system are torques to t,he 
wheels. Therefore, in this section, we check whether the 
designed controller works well in a real world by numer- 
ical simulations based on the dynamic model derived in 
Sec.2. Values of parameters of two-wheeled mobile robot 
are given in Table 2. 

In numerical simulations, we use the input torques to 
the wheels, Eq.(17), substituting the feedback law U(Z), 
Eq.(20), into Eq.(17) as referenced velocities II and 62. 
We set the feedback gain 1C, so that the frequency band 
width of the controller is to about 1.6 Hz. We assume 
that the following frictional force acts on the point of the 
wheel touching the ground; When a wheel doesn’t skid, 
static friction acts on the point and the frictional force 
is up to the maximum static frictional force pF, where 
p is a coefficient of static friction and F is the normal 
reaction force exerted to the point of the wheel. When a 
wheel is skidding, kinetic friction acts on the point and the 
frictional force L is expressed as 

Ic = -(& + v)Fv, 

where p’ is a coefficient of kinetic friction, v is a coefficient 
of viscous friction and v, is the velocity vector of the point 
of the wheel touching the ground. The parameters, ,LJ, ~1’ 
and v, are set to be 0.8, 0.3 and l.O[s/m] respectively. 

We executed numerical simulations based on the dynamic 
model, Eq.(lO), which correspond to Case (l-b) and (2-b) 
in the kinematic model that show a good control perfor- 
mance of the system. Initial values of the state variable 

N 
2. 

10 I I I I I 
8- 

Ul - 

6r IL2 --- _ 
1 
c 

4l 

-6 I I I I I 
0 12 3 4 5 6 

t 

Figure 8: Time history of ~1, ~2 (Case (2-b)) 

Table 2: Values of system parameters 

L 

Z, the parameters, (Y and p, in Eq.(20) and the function 
h(g) are summarized as in Table 3. Case A, B and C are 
corresponding to Case (l-b), and Case D, E and F are cor- 
responding to Case (2-b). As the parameter (Y becomes to 
be large, the referenced velocities, 2il and &Z become to be 
large and the dynamic effect of the mot,ion of the system 
becomes to be crucial. The simulation results are shown 
in Fig.9 and 10. In Case A and D, the wheels don’t skid 
at all and the trajectories of the system in ~1 and 22 plane 
are similar to the ones in Case (l-b) and (2-b). Times 
taken for the system to reach the neighborhood of t.he de- 
sired point are about 500 [s] in Case A and about 100 [s] 
in Case D. In Case B and E, although the times become 
to be short according to the value of the parameter a, at 
least one of the two wheels is skidding on the dashed line. 
In Case C and F, since the skid of the wheels shown by 
dashed lines is intensive than Case B and E, t,he t,rajecto- 
ries of the system are remarkably different from the ones 
in Case (l-b) and (2-b). Moreover, the bar attached on 
the body floats away from the ground on the dash-dotted 
line between the symbols + in Case C. However, in each 
case, the skid of t,he wheels fades out as the time goes on, 
and then the mobile robot goes toward the desired state. 
Times taken for the system to reach the neighborhood of 
the desired point are about 50 [s] in Case B , about 15 [s] 
in Case C, about 30 [s] in Case E and about 3 [s] in Case 
F. 

From the above result, if the value of the parameter (Y 
is small, it is proper to design the controller based on t,he 
kinematic model. But, if the value of the parameter (Y 
becomes to be large, the motion of the system with the 
controller is remarkably different from the motion of the 
system based on the kinematic model because of the dy- 
namic effect of the motion of the system. Nevertheless, 
after the skid of the wheels fades out, the system goes 
toward the desired state in the above numerical results. 
It is caused by the fact that the designed controller is a 
feedback controller. 

6. CONCLUSIONS 

In this paper, we designed a controller of a two-wheeled 
mobile robot and analyzed whether the designed controller 
works well in a real world by numerical simulations. In a 
real world, t,he wheels may skid on the ground or float 
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Table 3: Simulation cases (dynamic model) 
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Figure 9: The motion of the system in zl-zz plane (Case 
A, B and C) 

away from the ground according to the rolling motion of 
the body. Therefore we derived a dynamic model of a 
two-wheeled mobile robot which implies the translational 
motion with 3 degrees of freedom and the rotational mo- 
tion with 3 degrees of freedom of the body and the rota- 
tional motion with one degree of freedom of each wheel. 
The derived dynamic model is transformed to a kinematic 
model under the assumption that the wheels don’t skid 
at all and translational velocity and rotational velocity of 
the body of the mobile robot are regarded as inputs of the 
system. We designed a controller for the kinematic model 
by extending the Lyapunov control and verified that the 
designed controller works well in a real world by numerical 
simulations based on the dynamic model. 
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