A Motion Control of a Two-Wheeled Mobile Robot
Kazuo Tsuchiya Takateru Urakubo Katsuyoshi Tsujita
Dept. of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University
Yoshida-Honnachi, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
urakubo@space.kuao.kyoto-u.ac.jp

ABSTRACT
In this paper, we discuss a motion control of a two-wheeled mobile robot. In the design of a controller for the system, a kinematic model is usually used; The wheels don’t skid at all and the mobile robot is regarded as a 3-dimensional 2-input nonholonomic system without drift. Many controllers based on the kinematic model have been proposed. However, in a real world, the wheels may skid on the ground or float away from the ground according to the rolling motion of the body. Therefore, we derive a dynamic model of a two-wheeled mobile robot which implies the effect of the skid of the wheels. Then, we construct a tensor by superposing an asymmetric tensor on a symmetric positive-definite tensor and design the control input by multiplying the gradient vector of Lyapunov function by the tensor. When an extended Lyapunov control is applied to a nonholonomic system, the controlled system doesn’t have an equilibrium point except the desired point and converges to the desired point. The designed controller is a discontinuous time-invariant feedback controller.

1. INTRODUCTION
One of the basic functions of robot is mobility, and mobile robots have mechanisms to realize the mobility such as legs or wheels. For this kind of robots, usually, the motion is determined by the kinematic relationship between the degrees of freedom of motion of the mechanism; For a wheeled robot, when the wheels don’t skid, the motion is determined by the rotations of the wheels. This kind of dynamic system is called a nonholonomic system. A mobile robot is a nonholonomic system. For a nonholonomic system, the controller can be designed with the kinematic relationship as the state equation. From the viewpoint of control, a nonholonomic system has a difficult property; it is uncontrollable locally even if it is controllable globally. An effective and general algorithm to design a controller of a nonholonomic system has not been proposed yet. To control the motion of a mobile robot, a general method to design a controller of a nonholonomic system must be developed.

The controllers which have been proposed so far are classified as time-varying controllers and discontinuous time-invariant controllers. Time-varying controllers were originated by Samson ([3]), Sordalen and Eggeland ([5]), and M’Closkey and Murray ([8]) proposed nonsmooth time-varying controllers which provide exponential rates of convergence.

On the other hand, discontinuous time-invariant feedback controllers have been proposed by Khennouf and Canudas de Wit ([2]). Astolfi has proposed a method of designing a controller by transforming an original system through a nonsmooth coordinate transformation and designing a smooth time-invariant controller for the transformed system ([6], [7]). The controllers provide exponential rates of convergence.

The Lyapunov control is one of the design methods of a feedback controller of nonlinear systems; By setting a positive-definite function (Lyapunov function) which is minimized at the desired point and multiplying the gradient vector of the function by a symmetric positive-definite tensor, the control input is designed. When the Lyapunov control is applied to a nonholonomic system, the controlled system has equilibrium points besides the desired point and may stop at these points. We have proposed a design method by extending the Lyapunov method as follows ([15],[16]); First, we define a positive-definite function (Lyapunov function) which is minimized at the desired point. Then, we construct a tensor by superposing an asymmetric tensor on a symmetric positive-definite tensor and design the control input by multiplying the gradient vector of Lyapunov function by the tensor. When an extended Lyapunov control is applied to a nonholonomic system, the controlled system doesn’t have an equilibrium point except the desired point and converges to the desired point. The designed controller is a discontinuous time-invariant feedback controller.

In this paper a motion control of a two-wheeled mobile robot is discussed. We derive a dynamic model of a two-wheeled mobile robot. This model implies the translational motion with 3 degrees of freedom and the rotational motion with 3 degrees of freedom of the body, and also implies the effect of the skid of the wheels. Then, we analyze the behavior of the two-wheeled mobile robot which is controlled by an extended Lyapunov control by numerical simulations based on the derived model. As a result, at the neighborhood of the point where the two-wheeled mobile robot performs a switch-back, the skid or the float of the wheels may be brought about according to the dynamics. But the frequency of the skid or the float becomes less as the two-wheeled mobile robot converges to the desired point. Finally, the two-wheeled mobile robot reaches the desired point.

2. A DYNAMIC MODEL OF A TWO-WHEELED MOBILE ROBOT
We consider a symmetrical two-wheeled mobile robot composed of three rigid links, the body and two wheels, as
Figure 1: Schematic model of a two-wheeled mobile robot shown in Fig.1. We assume that a rigid bar is attached on the front of the body so that the body is kept horizontal on the ground and that the rigid bar slips smoothly on the ground. Each wheel is driven by its own motor torque and touches the ground with a point. Frictional force acts on the points of the wheels. We derive an equation of motion of the two-wheeled mobile robot. The model implies the translational motion with 3 degrees of freedom and the rotational motion with 3 degrees of freedom of the body and the rotational motion with one degree of freedom of each wheel.

The body, the left wheel and the right wheel are labeled as link 1, 2 and 3. We introduce a set of unit vectors \(\{ \mathbf{a}^{(2)} \} = \{ \mathbf{a}_1^{(2)}, \mathbf{a}_3^{(1)} \} \) fixed in an inertia space and a set of unit vectors \(\{ \mathbf{a}^{(1)} \} = \{ \mathbf{a}_1^{(1)}, \mathbf{a}_2^{(1)}, \mathbf{a}_3^{(1)} \} \) fixed in link 1. The origin of \(\{ \mathbf{a}^{(1)} \} \) is the total mass center of the three links and the origin of \(\{ \mathbf{a}^{(2)} \} \) is the mass center of the link i (i = 2,3). The direction of \(\mathbf{a}_1^{(1)} \) is toward the front of the body and the direction of \(\mathbf{a}_2^{(1)} \) is toward the top of the body. The direction of \(\mathbf{a}_3^{(1)} \) (i = 1,2,3) coincides with the direction of the rotation axis of the wheels. Using these sets of unit vectors, we define the following column matrices;

\[
\begin{align*}
\{ \mathbf{a}^{(2)} \}^T &= \begin{bmatrix} a_1^{(2)} & a_3^{(1)} \end{bmatrix} \\
\{ \mathbf{a}^{(1)} \}^T &= \begin{bmatrix} a_1^{(1)} & a_2^{(1)} & a_3^{(1)} \end{bmatrix} \\
\{ \mathbf{a}^{(3)} \}^T &= \begin{bmatrix} a_1^{(3)} & a_2^{(3)} & a_3^{(3)} \end{bmatrix}
\end{align*}
\]

We introduce the following vectors;

\[
\begin{align*}
\omega(k,l) &: \text{ angular velocity of } \{ \mathbf{a}^{(k)} \} \text{ with respect to } \{ \mathbf{a}^{(l)} \} \\
\mathbf{r}^{(i)} &: \text{ position vector from the origin of } \{ \mathbf{a}^{(0)} \} \text{ to the origin of } \{ \mathbf{a}^{(i)} \} \\
\mathbf{r}^{(i)} &: \text{ position vector from the origin of } \{ \mathbf{a}^{(i)} \} \text{ to the origin of } \{ \mathbf{a}^{(j)} \} (i = 2,3)
\end{align*}
\]

We define the following coordinate transform matrices;

\[
\begin{align*}
A^{(k,l)} &: \text{ a coordinate transform matrix from } \{ \mathbf{a}^{(k)} \} \text{ to } \{ \mathbf{a}^{(l)} \}
\end{align*}
\]

We express the orientation of \(\{ \mathbf{a}^{(1)} \} \) with respect to \(\{ \mathbf{a}^{(0)} \} \) and the orientation of \(\{ \mathbf{a}^{(2)} \} \) with respect to \(\{ \mathbf{a}^{(1)} \} \) as Euler angles \(\theta^{(1)} \) and the orientation of \(\{ \mathbf{a}^{(3)} \} \) with respect to \(\{ \mathbf{a}^{(2)} \} \) as Euler angles \(\theta^{(2)} \) (i = 2,3). We introduce the state variables as follows;

\[
x^T = [\mathbf{r}^{(1)T} \omega^{(1,0)T} \omega^{(2,1)T} \omega^{(3,1)T}]^T.
\]

When the variable,

\[
\theta^T = [\theta^{(1)T} \theta^{(2)T} \theta^{(3)T}]^T,
\]

is introduced, we obtain

\[
x = S \dot{\theta},
\]

where

\[
\begin{align*}
S &= \begin{bmatrix} I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & S_3(\theta_1) & S_2(\theta_2) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\end{align*}
\]

\[
S_3(\theta) = \begin{bmatrix} \cos \theta & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\]

\[
I : 3 \times 3 \text{ unit matrix}
\]

\[
0 : 3 \times 3 \text{ zero matrix}
\]

The kinetic energy \(T \) of the total system is expressed as

\[
2T = x^T H^T (\mathbf{L}^T M \mathbf{L} + J) H x,
\]

where

\[
\mathbf{L} = A^{(1,0)} A^{(2,1)} A^{(3,1)}
\]

\[
H = \begin{bmatrix} I & 0 & 0 \\
0 & A^{(2,1)} & 0 \\
0 & 0 & A^{(3,1)}
\end{bmatrix}
\]

\[
M = \begin{bmatrix} m^{(1)} & 0 & 0 \\
0 & m^{(2)} & 0 \\
0 & 0 & m^{(3)}
\end{bmatrix}
\]

\[
J = \begin{bmatrix} 0 & 0 & 0 \\
0 & J^{(1)} & 0 \\
0 & 0 & J^{(3)}
\end{bmatrix}
\]

and we use the following quantities;

\[
m^{(1)}: \text{ mass of the body}
\]

\[
m^{(2)}: \text{ mass of the wheel}
\]

\[
m^{(3)}: \text{ mass of the wheel}
\]

\[
J^{(i)}: \text{ inertia matrix of the body about the origin of } \{ \mathbf{a}^{(i)} \}
\]

\[
J^{(i)}: \text{ inertia matrix of the wheel } i \text{ about the origin of } \{ \mathbf{a}^{(i)} \}
\]

We define a matrix \(\mathbf{h} \) corresponding to a vector \(h^T = [h_1, h_2, h_3] \) as follows;

\[
\mathbf{h} = \begin{bmatrix} 0 & h_3 & -h_2 \\
h_3 & 0 & h_1 \\
-h_2 & -h_1 & 0
\end{bmatrix}
\]

The generalized momentum \(\mathbf{\dot{L}} \) for the state variable \(x \) is computed as

\[
\mathbf{\dot{L}} = \begin{bmatrix} \mathbf{\dot{L}}^{(0)} \\
\mathbf{\dot{L}}^{(1)} \\
\mathbf{\dot{L}}^{(2)} \\
\mathbf{\dot{L}}^{(3)}
\end{bmatrix} = \left(\frac{\partial T}{\partial \mathbf{r}} \right)^T + \left(\frac{\partial T}{\partial \mathbf{\omega}} \right)^T - II^T (\mathbf{L}^T M \mathbf{L} + J) H x.
\]
The components of \(\mathbf{L} \) are physically interpreted as:

\[
\begin{align*}
\mathbf{L}^{(0)} & : \text{translation momentum of the total system} \\
\mathbf{L}^{(1)} & : \text{angular momentum of the total system about the origin of } \{\mathbf{a}^{(1)}\} \\
\mathbf{L}^{(i)} & : \text{angular momentum of the wheel } i \text{ about the origin of } \{\mathbf{a}^{(i)}\}
\end{align*}
\]

Using \(\hat{\mathbf{L}} \), the equation of motion is derived as follows,

\[
\hat{\mathbf{L}} + \Omega \mathbf{L} = \hat{\mathbf{G}},
\]

where

\[
\Omega = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

and \(\hat{\mathbf{G}} \) is a generalized force computed as follows,

\[
\hat{\mathbf{G}}^T = \begin{bmatrix}
\mathbf{G}^{(0)T} & 0 & 0 & \mathbf{G}^{(2)T} & \mathbf{G}^{(3)T}
\end{bmatrix},
\]

\[
\mathbf{G}^{(0)T} = (m_{(1)} + m_{(2)} + m_{(3)}) \begin{bmatrix} 0, 0, g_0 \end{bmatrix},
\]

\[
\mathbf{G}^{(i)T} = \begin{bmatrix}
\tau_{(1)}^{(i)} & \tau_{(2)}^{(i)} & \tau_{(3)}^{(i)}
\end{bmatrix},
\]

where \(g_0 \) is the gravity acting on the unit mass and \(\tau_{(i)}^{(j)} \) is torque to drive the wheel \(i \).

In the model, \(\mathbf{L} \) is constructed by the bonding of the Lagrange undetermined multiplier;

\[
\hat{\mathbf{L}} + \Omega \mathbf{L} = \hat{\mathbf{G}},
\]

where

\[
E^T = \frac{\partial \Phi}{\partial \theta}, \quad K^T = \frac{\partial \Psi}{\partial z},
\]

and \(\Gamma \theta, A \Psi \) are Lagrange undetermined multipliers. The motion of the two-wheeled mobile robot is determined by the equation of motion, Eq.(14), and the constraints, Eq.(13).

3. DESIGN OF A CONTROLLER

Basic Equation for Design of a Controller

We assume that the wheels or the bar doesn’t float away from the ground and that the wheels of the two-wheeled mobile robot don’t skid at all. Then, translational velocity \(u_1 \) and angular velocity \(u_2 \) of the mobile robot are determined by the following kinematic relationship;

\[
\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} D/2 & -D/2 \\ -D/R & D/R \end{bmatrix} \begin{bmatrix} \dot{\theta}^{(2)} \\ \dot{\theta}^{(3)} \end{bmatrix},
\]

where \(D \) is the radius of each wheel and \(R \) is the distance between the two wheels. We consider the following feedback law of the torque \(\tau_{(i)}^{(j)} \) to the wheel \(i \);

\[
\begin{bmatrix} \tau_{(2)}^{(i)} \\ \tau_{(3)}^{(i)} \end{bmatrix} = -K_i \begin{bmatrix} \dot{\theta}^{(2)} \\ \dot{\theta}^{(3)} \end{bmatrix} \begin{bmatrix} D/2 \\ D/R \\ D/R \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \end{bmatrix}.
\]

A Controller Based on the Extended Lyapunov Control

We have proposed a method to design a controller for a 3-dimensional 2-input nonholonomic system without drift based on the extended Lyapunov control ([15],[16]). We introduce the following Lyapunov function;

\[
V(z) = \frac{1}{2} (m_1 z_1^2 + m_2 z_2^2 + m_3 z_3^2),
\]

where \(m_1, m_2 \) and \(m_3 \) are positive constants. The input vector is designed as follows;

\[
u = \alpha (u_1 + \beta u_2),
\]

where \(\alpha \) and \(\beta \) are positive constants.

\[
u_1 = -I_i B^T \nabla V,
\]

\[
u_2 = -\frac{z_2}{h(g)} I_n B^T \nabla V.
\]
\[I_s = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_a = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \]
\[g = |B^T \nabla V| = \sqrt{(z_1 \cos \theta + z_2 \sin \theta)^2 + \beta^2}. \quad (23) \]
\[\nabla = \begin{bmatrix} \frac{\partial}{\partial z_1} \\ \frac{\partial}{\partial z_2} \end{bmatrix}^T, \]
and \(h(g) \) is a smooth function such that
\[h(0) = 0, \quad h(g) > 0 \quad \text{for} \quad g > 0. \quad (24) \]

We define
\[\frac{1}{h(g)} B^T \nabla V = 0 \quad \text{at} \quad BTVV = 0. \quad (25) \]

The term \(u_s \) in the input \(u \), Eq. (21), moves the system so that the value of the Lyapunov function \(V \) decreases. Since the term \(u_s \) is zero on the line, \(g = 0 \), the system stops at a point on the line if the input \(u \) consists of only the term \(u_s \). While, the term \(u_s \) in the input \(U \), Eq. (22), moves the system so that the value of the Lyapunov function \(V \) is constant, and keeps the system away from the line, \(g = 0 \).

Taking account of the characteristics of \(u_s \) and \(u_a \), it is expected that the system with the input vector (20) moves away from the line, \(g = 0 \), reduces the value of the Lyapunov function \(V \) and converges to the origin as \(V \to 0 \).

4. THE BEHAVIOR OF THE CONTROLLED SYSTEM

Basic equation (18) with the input (20) becomes
\[\frac{dz}{dt} = -\alpha B(I_s + \beta \frac{h_z}{h(g)} I_a)B^T \nabla V. \quad (26) \]

Since the parameter \(\alpha \) affects only the time scale, without loss of generality, the parameter \(\alpha \) can be set to be 1.0; for \(t_1 = \alpha t, \frac{dz}{dt} = -B(I_s + \beta \frac{h_z}{h(g)} I_a)B^T \nabla V \). We have analyzed the behavior of the system (26) in [13], [14] and [16], setting the parameters of the Lyapunov function (19), \(m_1, m_2 \) and \(m_3 \), to be \(1.0 \), and the parameter \(\alpha \) to be 1.0.

Dynamic Characteristics

With Eq. (26), the derivative of \(V(t) \) is computed as
\[\dot{V} = -(B^T \nabla V)^T (I_s + \beta \frac{h_z}{h(g)} I_a)B^T \nabla V \]
\[= -|B^T \nabla V|^2 \leq 0. \quad (27) \]

The equilibrium points of the controlled system, Eq. (26), are the points on the line, \(g = 0 \). From Eq. (23), the line, \(g = 0 \), coincides with the \(z_2 \) axis. Equation (27) shows that the controlled system converges to the line. We will examine the stability of the points on the line. Since, on the line, the basic equation (26) is discontinuous, for the sake of analysis, we modify Eq. (26) as follows;
\[\dot{x} = -B(I_s + \beta \tanh \left(\frac{h(g)}{c} \right) \frac{h_z}{h(g)} I_a)B^T \nabla V. \quad (28) \]

Equation (28) becomes to be Eq. (26) as \(\epsilon \) becomes to be zero. By linearizing Eq. (29) in the neighborhood of the equilibrium points, the stability of the system on the \(z_2 \) axis is revealed as follows;
\[\begin{cases} \frac{\sqrt{2\epsilon}}{\beta} < |z_2| < 2 \sqrt{1 + \frac{\epsilon}{\beta}} \quad \Leftrightarrow \quad \text{stable focus} \\ |z_2| > 2 \sqrt{1 + \frac{\epsilon}{\beta}} \quad \Leftrightarrow \quad \text{unstable focus} \quad (29) \\ |z_2| < \frac{\sqrt{2\epsilon}}{\beta} \quad \Leftrightarrow \quad \text{unstable node} \end{cases} \]

As the result, as \(\epsilon \) becomes to be zero, the origin becomes to be the only stable equilibrium point of the system (28). Therefore, the stable equilibrium point of the system (26) becomes to be only the origin.

We set the function \(h(g) \) to be \(g \) or \(g^2 \), and analyze in detail the behavior of the system in the neighborhood of the origin.

(1) The function \(h(g) \) is set to be
\[h(g) = g. \quad (30) \]

Then, the following approximate solutions of the variables \(z \) and \(g \) are obtained;
\[z_1 = g \cos(\omega_1 t + \phi_1), \quad \theta = g \sin(\omega_1 t + \phi_1), \quad (31) \]
\[|z_2| = \frac{1}{\sqrt{2} \beta + C}, \quad (32) \]
\[g = \frac{\beta}{\beta t + 2C}, \quad (33) \]
where \(C \) and \(\phi_1 \) are constant, and \(\omega_1 = \frac{2\sqrt{2}}{\beta} \). Expression (31) shows that the amplitude of oscillation decreases as \(O(t^{-1}) \) while the frequency of oscillation increases as \(O(t^2) \). On the other hand, input \(u \) decreases as \(O(t^{-2}) \) and tends to zero as \(t \to \infty \).

(2) The function \(h(g) \) is set to be
\[h(g) = g^2. \quad (34) \]

First, we consider the behavior of the system in the region where \(g^2 < O(\beta |z_2|) \). In the region the following approximate solutions of the variables \(z \) and \(g \) are obtained;
\[z_1 = g \cos(\omega_2 t + \phi_2), \quad \theta = g \sin(\omega_2 t + \phi_2), \quad (35) \]
\[z_2 = C_1 e^{-\frac{\beta}{2} t}, \quad (36) \]
\[\begin{cases} \beta < 2 & : g = \sqrt{C_1 e^{-2t} + \frac{\beta^2}{2} C_2 e^{-\beta t}} \quad (37) \\ \beta = 2 & : g = \sqrt{\beta C_1 e^{-t} + C_2} e^{-2t} \end{cases} \]
where \(C_1, C_2 \) and \(\phi_2 \) are constant, and \(\omega_2 = \frac{2\beta}{\beta} \).

When \(\beta < 4.0 \), the system satisfies that \(g^2 < O(\beta |z_2|) \) for all \(t > 0 \). As the time goes on, the amplitude of oscillation of the inputs \(u \) and \(u_a \) becomes to be a constant, \(\sqrt{\beta(2 - \beta)} \), if \(\beta < 2.0 \) and becomes to be 0 if \(2.0 \leq \beta < 4.0 \). The frequency of oscillation of the inputs, as the time goes on, becomes to be large exponentially.
Table 1: Simulation cases (kinematic model)

<table>
<thead>
<tr>
<th>Case</th>
<th>$h(g)$</th>
<th>α</th>
<th>β</th>
<th>Initial Value of z_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-a)</td>
<td>g</td>
<td>1.0</td>
<td></td>
<td>(0.01, 1.0, 0.01)</td>
</tr>
<tr>
<td>(1-b)</td>
<td>g^*</td>
<td>10.0</td>
<td></td>
<td>(0.01, 1.0, 0.01)</td>
</tr>
<tr>
<td>(2-a)</td>
<td>g^*</td>
<td>1.0</td>
<td>β</td>
<td>(0.5, 1.0, 0.0)</td>
</tr>
<tr>
<td>(2-b)</td>
<td>g^*</td>
<td>5.0</td>
<td>β</td>
<td>(0.5, 1.0, 0.0)</td>
</tr>
</tbody>
</table>

When $\beta > 4.0$, the system can't satisfy that $g^2 < O(\beta|z_2|)$ for all $t > 0$ and, as the time goes on, goes toward the region where $g^2 \geq O(\beta|z_2|)$. As the time goes on, the amplitude and the frequency of oscillation of the inputs u_1 and u_2 become to be small exponentially, as long as the solutions, Eq.(36) and Eq.(37), are proper.

Next, we consider the behavior of the system in the region where $g^2 \geq O(\beta|z_2|)$. In the region we obtain the equation for g as

$$g = -g.$$ \hspace{1cm} (38)

If $g^2 \geq O(\beta|z_2|)$ for all $t > 0$, from Eq.(38), we obtain

$$g = C_0 e^{-t},$$ \hspace{1cm} (39)

where C_0 is constant. Then, since $|z_2| \leq O(e^{-\beta t})$, the system converges to the origin and the magnitude of the inputs converges to 0. According to the initial value of the system and the value of the parameters β, the system can't satisfy that $g^2 < O(\beta|z_2|)$ for all $t > 0$ and, as the time goes on, may go toward the region where $g^2 < O(\beta|z_2|)$. If the system moves into the region where $g^2 < O(\beta|z_2|)$, the system behaves as the above analysis.

As a result of these analyses, we obtain the following conclusion; The controlled system converges to the origin exponentially. The behavior of the system is different according to the value of the parameter β and initial conditions. The magnitude of the inputs becomes to be 0 or a constant, as the time goes on.

Numerical Examples

Numerical simulations were executed to check the analysis based on Eq.(18). First, the simulation results where $h(g) = g$ are shown.

Case (1-a) : The value of the parameter β is set to 1.0 and the system converges to the origin as shown in Fig.3. First, the system approaches the curved surface, $g = \frac{e^{\beta t}}{2}$, and then, converges to the origin, the desired point, along that curved surface. This result also consists with the solutions of the variables g and z_2, Eq.(33) and Eq.(32).

Case (1-b) : The value of the parameter β is set to be 10.0 and good performance of control is realized. Figure 4 shows the motion of the system in z_1 and z_2 plane. In this case, first, the system moves to the neighborhood of the desired point after three large switch-backs. Then, in the neighborhood of the origin, the system behaves in the same way as in Case (1-a); the variables z_1 and θ oscillate with a high frequency. But, in practice, we may avoid this oscillation, if we cease control in a neighborhood of the desired point.

Next, the simulation results where $h(g) = g^2$ are shown.

Case (2-a) : The value of the parameter β is set to be 1.0. The variables z_1 and z_2 behave as the solutions, Eq.(36) and Eq.(37). Figure 5 shows the behavior of the system in z_1 and z_2 plane. The amplitude of oscillation of the inputs, u_1 and u_2, converges to a constant, 1.0, as shown in Fig.6.

Case (2-b) : The value of the parameter β is set to be 5.0. Figure 7 shows the motion of the system in z_1 and z_2 plane. In this case, the system moves to the neighborhood of the desired point after two large switch-backs, and, in the neighborhood of the origin, converges to the origin exponentially without the oscillation of the variables z_1 and θ. The time history of variable g matches the solution, Eq.(39), very well. The inputs, u_1 and u_2, converge to zero and don't oscillate with a high frequency as shown in Fig.8.

From the above results, taking account of the rate of the convergence of the system and the oscillation and the magnitude of the inputs, the control performance in Case (2-b) is the best. Therefore, we recommend to set the function $h(g)$ to be g^2 and the parameter β to be larger than 4.0.

5. NUMERICAL SIMULATIONS BASED ON A DYNAMIC MODEL
In Sec. 3 we design a controller for a two-wheeled mobile robot under the condition that the wheels don’t skid at all and that translational velocity u_1 and angular velocity u_2 are regarded as the inputs of the system. But in a real world the wheels may skid or float away from the ground and the inputs of the system are torques to the wheels. Therefore, in this section, we check whether the designed controller works well in a real world by numerical simulations based on the dynamic model derived in Sec. 2. Values of parameters of two-wheeled mobile robot are given in Table 2.

In numerical simulations, we use the input torques to the wheels, Eq. (17), substituting the feedback law $u(z)$, Eq. (20), into Eq. (17) as referenced velocities \dot{u}_1 and \dot{u}_2. We set the feedback gain K, so that the frequency band width of the controller is about 1.6 Hz. We assume that the following frictional force acts on the point of the wheel touching the ground; When a wheel doesn’t skid, static friction acts on the point and the frictional force is up to the maximum static frictional force μF, where μ is a coefficient of static friction and F is the normal reaction force exerted to the point of the wheel. When a wheel is skidding, kinetic friction acts on the point and the frictional force k is expressed as

$$ k = -\left(\mu \frac{1}{v_z} + \nu \right) F v_z $$

(40)

where μ' is a coefficient of kinetic friction, ν is a coefficient of viscous friction and v_z is the velocity vector of the point of the wheel touching the ground. The parameters, μ, μ' and ν, are set to be 0.8, 0.3 and 1.0 [s/m] respectively.

We executed numerical simulations based on the dynamic model, Eq. (10), which correspond to Case (1-b) and (2-b) in the kinematic model that show a good control performance of the system. Initial values of the state variable z, the parameters, α and β, in Eq. (20) and the function $h(g)$ are summarized as in Table 3. Case A, B and C are corresponding to Case (1-b), and Case D, E and F are corresponding to Case (2-b). As the parameter α becomes to be large, the referenced velocities, \dot{u}_1 and \dot{u}_2 become to be large and the dynamic effect of the motion of the system becomes to be crucial. The simulation results are shown in Fig. 9 and 10. In Case A and D, the wheels don’t skid at all and the trajectories of the system in z_1 and z_2 plane are similar to the ones in Case (1-b) and (2-b). Times taken for the system to reach the neighborhood of the desired point are about 500 [s] in Case A and about 100 [s] in Case D. In Case B and E, although the times become to be short according to the value of the parameter α, at least one of the two wheels is skidding on the dashed line. In Case C and F, since the skid of the wheels shown by dashed lines is intensive than Case B and E, the trajectories of the system are remarkably different from the ones in Case (1-b) and (2-b). Moreover, the bar attached on the body floats away from the ground on the dash-dotted line between the symbols + in Case C. However, in each case, the skid of the wheels fades out as the time goes on, and then the mobile robot goes toward the desired state. Times taken for the system to reach the neighborhood of the desired point are about 30 [s] in Case C, about 3 s in Case E and about 3 [s] in Case F.

From the above result, if the value of the parameter α is small, it is proper to design the controller based on the kinematic model. But, if the value of the parameter α becomes to be large, the motion of the system with the controller is remarkably different from the motion of the system based on the kinematic model because of the dynamic effect of the motion of the system. Nevertheless, after the skid of the wheels fades out, the system goes toward the desired state in the above numerical results. It is caused by the fact that the designed controller is a feedback controller.

6. CONCLUSIONS

In this paper, we designed a controller of a two-wheeled mobile robot and analyzed whether the designed controller works well in a real world by numerical simulations. In a real world, the wheels may skid on the ground or float.
Table 3: Simulation cases (dynamic model)

<table>
<thead>
<tr>
<th>Case</th>
<th>h/g</th>
<th>α</th>
<th>β</th>
<th>Initial Value z^r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>g</td>
<td>0.01</td>
<td>10.0</td>
<td>(0.01, 1.0, 0.01)</td>
</tr>
<tr>
<td>Case B</td>
<td>g</td>
<td>0.1</td>
<td>10.0</td>
<td>(0.01, 1.0, 0.01)</td>
</tr>
<tr>
<td>Case C</td>
<td>g'</td>
<td>0.3</td>
<td>10.0</td>
<td>(0.01, 1.0, 0.01)</td>
</tr>
<tr>
<td>Case D</td>
<td>g'</td>
<td>0.06</td>
<td>5.0</td>
<td>(0.5, 1.0, 0.0)</td>
</tr>
<tr>
<td>Case E</td>
<td>g'</td>
<td>0.2</td>
<td>5.0</td>
<td>(0.5, 1.0, 0.0)</td>
</tr>
<tr>
<td>Case F</td>
<td>g'</td>
<td>3.0</td>
<td>5.0</td>
<td>(0.5, 1.0, 0.0)</td>
</tr>
</tbody>
</table>

Figure 9: The motion of the system in z_1-z_2 plane (Case A, B and C)

away from the ground according to the rolling motion of the body. Therefore we derived a dynamic model of a two-wheeled mobile robot which implies the translational motion with 3 degrees of freedom and the rotational motion with 3 degrees of freedom of the body and the rotational motion with one degree of freedom of each wheel. The derived dynamic model is transformed to a kinematic model under the assumption that the wheels don't skid at all and translational velocity and rotational velocity of the body of the mobile robot are regarded as inputs of the system. We designed a controller for the kinematic model by extending the Lyapunov control and verified that the designed controller works well in a real world by numerical simulations based on the dynamic model.

7. REFERENCES

Figure 10: The motion of the system in z_1-z_2 plane (Case D, E and F)