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ABSTRACT 

We have proposed an optimization method for a combi- 
natorial optimization problem based on successive bifurca- 
tion characteristics of a replicator equation, and to obtain 
a good approximate solution of the optimization problem, 
a deterministic annealing algorithm has been applied. Dur- 
ing the annealing process, bifurcations of equilibrium solu- 
tions occur and the bifurcation structure affects the per- 
formance of the deterministic annealing algorithm. In this 
paper, the bifurcation structure of the proposed dynamic 
system is analyzed in detail. It is shown that only pitch- 
fork bifurcations occur in the annealing process, and the 
solution obtained by the annealing is the branch uniquely 
connected with the uniform solution. In many cases, the 
solution corresponds to a good approximate solution of the 
optimization problem. 

1. INTRODUCTION 

A combinatorial optimization problem is an optimization 
problem in which decision variables are discrete. Since the 
number of feasible solutions is finite, basically it is possi- 
ble to obtain the optimal solution by computing values of 
performance index corresponding to all feasible solutions. 
But, since the number of feasible solutions increases expo- 
nentially with the size of the problem, such enumeration 
becomes impossible. Therefore, a variety of approximation 
methods have been proposed [l]. Among them, there is a 
method called an artificial neural network model. One of 
the models is the Hopfield model [a], in which a potential 
function is designed based on the performance index and 
the constraints of the problem, and then a dynamic system 
is constructed as a gradient system of the potential func- 
tion. An approximate optimal solution of the optimization 
problem is obtained as a stable equilibrium solution of the 
dynamic system. In the Hopfield model, although the per- 
formance of the approximate solution is sensitive to the 
values of parameters in the potential function, there is no 
guide to determine these values. So a lot of trials to over- 
come the drawback have been done. One of them is the 
mean field annealing or the deterministic annealing [3, 41, 
which was originally derived as the mean field approxima- 
tion of the simulated annealing. In this method, the param- 
eter in the potential function is varied gradually to prevent 
the state of the system from being trapped in local min- 
ima and obtain an approximate optimal solution. On the 
other hand, we have proposed a method by the use of suc- 
cessive bifurcation characteristics of a class of dynamic sys- 
tems [5]. The proposed method has been modeled by the 
use of replicator equations, and a deterministic annealing 
algorithm has been used to obtain an approximate optimal 
solution; The model has a uniform solution where a control 
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parameter in the dynamic system is small. By increasing 
the value of the control parameter, equilibrium solutions 
corresponding to approximate solutions of an optimization 
problem bifurcate successively according to the value of the 
performance index. Therefore a good approximate solution 
can be obtained by gradually increasing the control param- 
eter to the bifurcation point. In t.his paper, we analyze the 
bifurcation structure of the dynamic model in detail. 

In this paper, the analysis is carried out with the quad- 
ratic assignment problem (QAP) [6] which is introduced in 
Sec. 2. In Sec. 3, the dynamic system which we have pro- 
posed is mentioned briefly. In Sec. 4, the bifurcation of the 
proposed model is analyzed, and in Sec. 5, based on the 
analysis, a deterministic annealing algorithm is proposed 
and applied to many instances of the QAP to verify the 
performance of the algorithm. Finally, we briefly summa- 
rize the results in Sec. 6. 

2. THE QUADRATIC ASSIGNMENT 
PROBLEM 

The Quadratic Assignment Problem (QAP) [6] is defined 
as follows: 

min L(P), 
PEnN 

(1) 

(2) 

where A = (rxt3) and B = (bkl) are N x N matrices, IIN is 
the set of all permutations of n/ = { 1, . . . , N} and p is an 
element of it. Using permutation matrices, the QAP can 
be stated also as follows: 

L(zij) = trace(ATXTBX) = C ajj/biilXjJX;rj’. (4) 
‘, t,t JJ 

where IIN~N is the set of all N x N permutation matrices 
and X = (x$j) is an element of it. 

The QAP is considered one of the hardest combinatorial 
optimization problems. For a QAP, the number of feasible 
solutions is N! and it increases explosively with N. So it 
is practically impossible to compute values of the perfor- 
mance index for all these solutions. Therefore, heuristic al- 
gorithms are needed to obtain good approximate solutions 
in relatively short time from a practical point of view. 



3. EQUILIBRIUM SOLUTION AND ITS 
STABILITY OF THE PROPOSED 

MODEL [5] 

In this section we refer to the model we have proposed 
briefly. The model is given as a following replicator equa- 
tion: 

i'fi 3’fj 

where the variable u;~ (i, j = 1,. . , IV) expresses the (i, j) 
element of a N x N matrix, and parameters CYO > 0 and 
0 5 or << 1. The first term of the right hand side of 
Eq. (5) leads each u:, to unity. The second term represents 
the effect of competition with other elements which have 
the same subscript i or j, and the parameter cro controls 
the strength of the competition. The third term represents 
the inhibition of the appearance of solutions with low per- 
formance. This system is derived as a gradient system of a 
potential function V: 

V = vo +Vl, (6) 

Let 1”i3 (i, j = 1,. . . , N) denote an equilibrium solution 
of Eq. (5) and define a set r of subscripts (i, j) (i, j = 
l,...,N) as follows: 

r = {(i, j) 1 i& # 0, i, j = 1,. . . , N}. (9) 

Then, equilibrium solutions of Eq. (5) are classified as fol- 
lows: 

i 

(A) uniform solution :r=rO, 

(B) transition solution: r = rt # To, rp(Vp E fI~)llO) 
(C) feasible solution :r=rp(PEnIN)r 

where 

r0 = {(i, j) 1 i, j = 1, ‘. , N}, (11) 

rp = {(i,j) 1 i =p(j);j = l,..., N} (p E IIN). (12) 

The uniform solution is the equilibrium solution of which 
all the elements have nonzero values. On the other hand, 
each of the feasible solutions corresponds to a permutation 
matrix and thus corresponds to an approximate solution of 

the QAP. 
Stability conditions of the solutions are summarized as 

follows; The sufficient condition for the uniform solution to 
be stable is given as follows: 

The condition (13) is also the necessary condition when 
or = 0 (i.e. (~0 < 1). On the other hand, all equilibrium 
solutions except for the uniform solution are unstable if 

1 
- O<oo< N_l 

{ 
l- ~m~~(ajpbiP+a,/~biri,}. (14) 

“J 

Therefore, in the region where parameters (YO,(Y~ are suf- 
ficiently small, only the uniform solution is stable. The 
sufficient condition for all feasible solutions to be stable is 
given as follows: 

a0 > 
1 

l-(YI(N-1)’ (15) 

This condition is also the necessary condition when cyr = 0 
(i.e. (~0 > 1). On the other hand, all equilibrium solutions 
except for the feasible solutions are unstable if 

Therefore, only feasible solutions are stable when or is 
small and (~0 is large. Moreover, the necessary condition for 
a feasible solution corresponding to a permutation p E IIN 
to be stable is given by the following equation: 

a0 > 1+ &MP) - -qP)), (17) 

L(P) = c a,,~bP(3),(37 y (18) 
3!3/ 

E(P) = & )-J ~33&,(37 + a3/3bp(j’)i)r (19) 

i,3,j’ 

where L(p) is the value of the performance index corre- 
sponding to the feasible solution and z(p) corresponds to 
the mean value of the performance indices in a neighbor- 
hood of the feasible solution. It has been clarified numeri- 
cally that the mean value L(p) is almost constant for any 
feasible solution. Therefore, the condition (17) indicates 
that the feasible solutions become stable successively ac- 
cording to the value of the performance index. 

4. BIFURCATION OF THE PROPOSED 
MODEL 

In this section, we analyze the bifurcation structure of the 
equilibrium solutions of the dynamic system (5) with the 
parameter LYO as the control parameter. 

First, we consider the local bifurcation structure of the 
dynamic system (5). Choose a set r, and let ai3 (i,j = 
. . . , N) be the corresponding equilibrium solution. The ex- 
istence of the equilibrium solution is checked by the con- 
dition that Eq. (Al) has a positive solution. If the equi- 
librium solution exists, stability of the solution is checked 
by Eq. (All). Since the matrix Dr in Eq. (All) is sym- 

metric, all the eigenvalues of the matrix Dr are real and 
the stability of the solution is checked by the sign of the 
eigenvalues. The stability of the solution changes at some 
point CYO = BO where the matrix Dr has a zero eigenvalue. 
At that point, the following equations hold: 

fr,j, = 0 and a;,,, = 0 (k = 1,. . . , I<). (20) 

Here, we assume that the zero eigenvalue is simple, i.e. I( = 
1. This assumption is valid unless the matrices A, B have 
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some specific structure (symmetry). When this assumption 
holds, the linearized system (All) is rewritten as follows: 

where the N2 - l-dimensional vector 6Gr is given by remov- 
ing the element Su,i3r from the N2-dimensional vector 6~~ 

defined by Eq. (A12) and Br is (N2 - 1) x (N2 - 1) matrix 
given by removing the row and the column corresponding to 
(ir , jl) from the matrix Dr. There exists a one-dimensional 
center manifold W’ tangent to a one-dimensional center 
subspace spanned by t,he eigenvector corresponding to the 
zero eigenvalue [7]. The center manifold W” can be repre- 
sented as a local graph: 

where boo = (~0 - cuo and g(6~~r3rr Scro) is a N2 - l- 
dimensional vector valued function of Suiljl and So0 de- 
fined on some neighborhood of the bifurcation point 
(tiiJ, SO). The graph g(Su;131, &IO) is expanded in a Taylor 
series at the bifurcation point as follows: 

g = SUT,,,~& + solow,r + o(p21;13113). (23) 

r The coefficient vectors w, , wu), r are determined by the fol- 
lowing equations: 

I 

@-wr = hr 11 UI 

Ljrwr = hr 
(24) 

Q PI 

where the vectors hr u, h: are given by Eqs. (A17),(A18). 
The one-dimensional reduced dynamic syst,em on the center 
manifold WC, which determines the local behavior of the 
dynamic system (5) near the bifurcation point, is given by 

where constants ~1, ~2 are given by Eqs. (A23),(A24). The 
normal form (25) of the system shows that the bifurcation is 
the pitchfork bifurcation. There are two types of pitchfork 
bifurcations, i.e. the supercritical and the subcritical pitch- 
fork bifurcations. By increasing the control parameter as, 
the equilibrium solution of the dynamic system (5) changes 
from the uniform solution to the feasible solution through 
the pitchfork bifurcations at some bifurcation points. 

Next, we consider the global bifurcation structure of 
the dynamic system (5). Choose a set r. In the case 
where r = rf (the transition solution), by increasing cro, 
the solution appears through a supercritical or a subcriti- 
cal pitchfork bifurcation and disappears through a super- 
critical or a subcritical pitchfork bifurcation. In the case 
where r = r” (the uniform solution), the solution exists 
in the region where LYO is small. By increasing 00, the 
solution disappears through a supercritical pitchfork bifur- 
cation. On the other hand in the case where r = rp (the 
feasible solution), the solution exists in the region where cyo 
is large. By decreasing (~0, the solution disappears through 
a supercritical or a subcritical pitchfork bifurcation. When 

a solution disappears through a supercritical pitchfork bi- 
furcation, there exists a solution which appears through 
the supercritical pitchfork bifurcation. These two solutions 
form a continuous branch. If a solution disappears through 
a subcritical pitchfork bifurcation when CYO is increased, 
by slightly increasing CYO the solution jumps and connects 
with another existing solution with smaller value of the 

potential function V. On the other hand, if a solution ap- 
pears through a subcritical pitchfork bifurcation when (~0 
is increased, by slightly decreasing (~0 the solution jumps 
and connects with another existing solution with smaller 
V value. The uniform solution connects with one feasi- 
ble solution through supercritical and subcritical pitchfork 
bifurcations when CYO is increased. On the other hand, fea- 
sible solutions connect wit,h the uniform solution through 
supercritical and subcritical pitchfork bifurcations when (JYO 
is decreased. Figures 1 (a), (b) show two examples of the 
global bifurcation diagrams, where N = 5 and matrices 
A, B are randomly generated. In the figures, two types of 
branches are drawn; One is a branch which starts from the 
uniform solution and connects with one feasible solution 
when o(o is increased. The others are branches which start 
from all feasible solutions and disappear through subcritical 
pitchfork bifurcat,ions when crs is decreased. Particularly, 
the branch starting from the feasible solution correspond- 
ing to the optimal solution is drawn until it discontinuously 
connects with the uniform solution through a subcritical 
pitchfork bifurcation. In the case of Fig. l(a), the uniform 
solution continuously connects with a feasible solution only 
through supercritical pitchfork bifurcations. On the other 
hand in the case of Fig. l(b), the uniform solution discon- 
tinuously connects with a feasible solution through super- 
critical and subcritical pitchfork bifurcations. If there is 
a feasible solution with better performance than t,he fea- 
sible solution with which the uniform solution connect,s, 
the branch with which the better feasible solution connect,s 
crosses the branch with which the uniform solution con- 
nects when the parameter (YO is decreases. In many cases, 
there are few branches crossing the branch with which the 
uniform solution connects. This indicates that the feasible 
solution with which the uniform solution connects is a good 
approximate solut,ion, even if it is not optimal. 

5. DETERMINISTIC ANNEALING 
ALGORITHM 

To obtain a good approximate solution of a combinatorial 
optimization problem, there is a method called a determin- 
istic annealing algorithm. For our model, this method is 
carried out as follows; First, the control parameter CYO is 
set sufficiently small. Equation (5) is computed to obtain 
the uniform solution. Then, (~0 is slightly increased, and 
with the solution as the initial value, Eq. (5) is computed 
again to obtain the equilibrium solution. By repeating this 
procedure, a feasible solution is finally obtained. From the 
previous analysis of the bifurcation structure, it, is consid- 
ered that applying this method to our model, the feasible 
solution with which the uniform solution connects is ob- 
tained, and the solution is a good approximate solution. 
To accurately trace the branch connecting the uniform so- 
lution with a feasible solution, the increment of the param- 
eter cyo must be sufficiently small. But too small increment 
of o. increases the computational time. Therefore, to con- 
trol the increment of the parameter CYO, we introduce the 
following parameter S: 

s = ---L- CPiJ logP*J, 
N log N 

i,J 

pi, = &I (26) 

where p;, is normalized so that the sum over j is equal to 
unity. The parameter S takes the maximum value 1 for 
the uniform solution and the minimum value 0 for feasible 
solutions. Figures 2 (a), (b) show the change of the pa- 
rameter S for the branch connecting the uniform solution 
with a feasible solution when oa is increased. The cases (a) 
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Fig. 1. The global bifurcation diagrams. Lines (-) in- 
dicate branches of equilibrium solutions. At the points 
indicated by (+) and (o), the supercritical and the sub- 
critical pit.chfork bifurcations occur respectively. “unif.” 
represents the branch with which the uniform solution 
connects, and “opt.” represents the branch with which 
the optimal feasible solution connects. 
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Fig. 2. The change of the parameter S with respect 
to the parameter LYO. Arrows in figure (b) indicate the 
points where the subcritical pitchfork bifurcations occur. 

and (b) in Fig. 2 correspond to the cases (a) and (b) in 
Fig. 1 respectively. These figures show that the parameter 
S changes greatly at the point where a bifurcation occurs. 
Especially, the amount of the change is largest at the point 
where a subcritical pitchfork bifurcation occurs. Then, us- 
ing the parameter S, the increment of the parameter CYO is 
controlled, so that the amount of the change of S is kept 
constant; 

Acvo = $$Ao;ld, (27) 

A cyo = (Y,, - CY;‘~, AS = IS - S”‘dl, (28) 

where ASd is the desired change of the parameter S and 
CU~‘~, Sold mean the previous values of each parameter. By 
using the parameter S, the parameter cro is increased more 
slowly at points where the subcritical pitchfork bifurcations 
occur. And then, the annealing can be done efficiently. The 
results of the deterministic annealing algorithm for above 
examples are shown in Figs. 3 (a), (b). In each figure, the 
values of the performance index L of 100 trials of the deter- 
ministic annealing algorithm are plotted for various values 
of ASd where t,he initial values are generated randomly. 
L,,t is the optimal value of L. In the case (a) where no 
subcritical pitchfork bifurcation occurs, the feasible solu- 
tion with which the uniform solution connects is obtained 
for any value of ASd and in any trial. On the other hand, 
in the case (b) where subcritical pitchfork bifurcations oc- 
cur, another feasible solution than the above solution is 
obtained when ASd is large. But by setting ASd suffi- 
ciently small, the feasible solution with which the uniform 
solution connects is always obtained. 
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Fig. 3. The values of L/L+. 
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N 

Fig. 4. The dependence of the number of steps on the 
problem size N. The dashed line(--) is the interpolating 
line. 

Next, the deterministic annealing algorithm is applied 
to many problem instances in the QAPLIB [8], and some 
of the results are shown in Table 1. Table 1 shows that for 
many problem instances the difference between the value 
of the performance index obtained by the deterministic an- 
nealing algorithm and the optimal value is less than l%, 
and for others t,he difference is within a few percent. Fig- 
ure 4 represents the dependence of the number of steps 
on the problem size N. A linear interpolation of the data 
gives the relation, No. of Iterations = 1586N. This means 
that the number of steps doesn’t depend on the problem 
size N very much. The comput,ational time required by 
one step computation is proportional to about N4. The 
total time required for computation is proportional to N5. 
For instance, it is about 0.005 sec. (user time) for N = 20 
on DEC Alpha Station 500/333, and therefore the feasible 
solution is obtained in about 2 min. for N = 20. 

6. CONCLUSION 

We have proposed an algorithm for a combinatorial opti- 
mization problem based on successive bifurcation charac- 

Table 1. The values of the performance index obtained 
by the d 

[ 
name 

tern lir 

N 
, 

71 
26 
20 
20 
24 
20 
56 

100 
50 
50 
80 
80 

100 
100 

30 
40 

150 
50 

100 

algorithm. 
solution by the 

mnealing L 

5439285 

LILo,t 

bur26a 
Had20 
Nug20 
Nug24 
Rou20 
Sko56 

SkolOOa 
TaiSOa 
TaiSOb 
Tai8Oa 
TaiPOb 

TailOOa 
TailOOb 

Tho30 
Tho40 

Tholso 
wi150 

will00 

&tic annealin 
optimal 

solution+ Lopt 

(5426670) 
6922 
2570 
3488 

725522 
(34458) 

(152002) 
(4941410) 

(458821517) 
(13557864) 

(818415043) 

(21125314) 
(1185996137) 

(149936) 
(240516) 

(8=;;$ 

(273038) 

6970 
2588 
3490 

730710 
34502 

152502 
505 1386 

459975270 
13733524 

821025553 
21557766 

1193847431 
151256 
241192 

8158137 
48892 

273294 

1.00232 
1.00693 
1.007 
1.00057 
1.00715 
1.00128 
1.00329 
1.02226 
1.00251 
1.01296 
1.00319 
1.02047 
1.00662 
1.0088 
1.00281 
1.00303 
1.00156 
1.00094 

+ (.):best known solution (optimality has not been proved) 

terist,ics of a replicator equation. In this paper, the bifur- 
cation structure of the proposed dynamic system was ana- 
lyzed in detail. It was shown t,hat only pitchfork bifurca- 
tions occurr in this model. And, it was clarified that there is 
a feasible solution uniquely connect,ed with the uniform so- 
lution, and the solution is a good approximate solution. We 
proposed a deterministic annealing algorithm which starts 
from the uniform solution and reaches the feasible solut.ion 
connecting with it. Many results of application showed the 
high performance of this algorithm. 

PI 

PI 

PI 
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APPENDIX 

Choose a set r, and let ci;, (i, j = 1, .. . , N) be the cor- 
responding equilibrium solution. Then, since fi3 is linear 
with respect to ufJ, the equilibrium solut,ion u;~ is obtained 
by solving the following linear algebraic equation [5]: 

Crzr = br, (AlI 
where 

2 r = [. ..u$ . . .]’ ((i,j) g q, 

yr = 1.. . a~3 . . .I’ ((4 A 6 r), 
(A3) 

br = [n fi IT, (A4) 

and C,’ is a n(r) x n(r) matrix where n(r) indicates the 

number of elements of the set r. The matrix Cf is given by 
removing columns and rows which correspond to (i, j) 4 r 

from the following N2 x N2 matrix C: 

c=c0+c1, (A6) 

1 Cp c(2) 
0 

. . . 42) 
0 1 

co = CAP) ... . . : 

i. . 

. . 
C-47) . . . . 

& ..: . 
c(2) ’ 

c(2) 
0 

J’) 
0 J 

1 

C(l) = 
Qo I: 2 

0 

53 
2 

Cl = 

EQ . . . SLL 
2 

2 1 
. . . . : 

, cA2) = ‘OIN, (A8) 
2 . . . . . . ‘0 

. . . 53 
2 1 1 

[ &Jl) CP’) 1 1 . . .:: .,. ,&N) &W 1 1 

1 (A91 
_I 

(f+‘))-, = “‘(a tt 
2 

,b--, + a , -b.,.) 33 (t 33 1:. (AlO) 

By linearizing the dynamic system (5) with respect to 6uij 
= ~;j - 2”i3, the following equation is obtained [5]: 

6tir = Dr6ur, (All) 

where 

&Lr = [JUfT6V,rT]T, 

l5U,r = [. . . bzci, . . .]’ ((i, j) E T), 

6Ul = [...SUij .‘.lT ((i,j) $ r), 

Dr=[ “OE $1, W4) 

Dr = -2prCrpr 

D! = diag(fi,; ((i: j) $ r), 

Pr = d&(1&,/) ((i,j) E r). 

(Al21 

W3) 

6415) 

(A16) 

h:, h: in Eq. (24) are N2 -l-dimensional vectors given 
as follows: 

h: = [h,rZT hvryT IT, 
vv 

(A17) 

n(r) Nz+r)--l 
AA 

h,r = [hLZT h,ryT I*, (A18) 

where 

hur = [.‘.h&,i3 “‘IT ((;,j) E r), 

hu’, = [O...O]T, 
(A19) 

hL = [. . .h&j . . .I’ ((i,j) E r), 

h& = [O...O]T, 
WO) 

hZ,i3 = -$(Jii, + 6331)tiiJ 

- $(a3jlbiil + a mbi1;)2”;3 ((Cj) E r),(A21) 

hc,;l = -f [ C $fJ +C ti:,,]tiij ((i,j) E r).(A22) 

I’#i j’#j 
(i’,sr (i,j’)cr 

The constants ~1, pz in Eq. (25) are given as follows: 

Pl = -60 
[c- 

Ui’31 Wa,i’jl + C nii3’Wa,i,i’] 

.‘#.I j’#jl 

(i’,jl)cr (6,37cr 

-a1 c (Q 313/bili’ + a3~jlbi~il)e(i~3~w,,;r3~ 

1’93’ 
(i’,Y)cr 

1 -- 
2 [c 

&jl + c &] 1 (A23) 

*‘#;I j’#jl 
(i’,jl)Er (il,.i’)Er 

p2 = --bo 
Lx- 

ui’31 Wu,irj, + C Bi,J’wti,ilj’] 

:‘#.I j’#jl 
(i’,31)a- (il,.i’)u 

- (~1 C (ajl3/bilit + a3131bilil)ai’J’W,,i’3’ 

i’,j’ 

(i’,.7’)e- 

-(1+ alal,j,b;,;,). 6424) 
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