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Abstract

This paper deals with the design of a control sys-
tem for a quadruped locomotion robot. The proposed
control system is based on the bottom up approach
and it is composed of a leg controller and a gait pat-
tern controller describing a hierarchical architecture.
The leg controller drives the actuators at the joints
of the legs using high-gain local feedback control. It
receives the commanded signal from the gait pattern
controller. The gait pattern controller, on the other
hand, involves nonlinear oscillators. These oscillators
interact with each other through the signals from the
touch sensors located at the tips of the legs. The con-
trol system repeatedly moves the legs in prede�ned
motion patterns, synchronizing the motion with the
signals from the touch sensor. It also adaptively sta-
bilizes the phase di�erences between the motions of the
legs. The performance of the proposed control system
was veri�ed by numerical simulations and hardware
experiments.

1 Introduction

Locomotion is one of the basic functions of a mo-
bile robot. Using legs is one of the strategies for ac-
complishing locomotion. Although simpler forms of
locomotion such as wheels can be easier to design and
control, using legs for locomotion allows the robot to
move on rough terrain, and therefore improves access
to many locations. Therefore, a considerable amount
of research has been done on motion control of legged
locomotion robots. This paper deals with the motion
control of a quadruped locomotion robot.

Several gait patterns can be considered for
quadruped locomotion robots. The gait pattern in
which any combinations of three legs of the robot sup-
port the main body at any instant during locomotion
is c alled walk pattern. For low velocities in which
the inertia e�ect is small enough, the walk pattern is
statically stable in terms of the dynamics of the robot
mechanism. However, if the velocity of locomotion
increases, the locomotion of the robot becomes unsta-
ble. On the other hand, trot pattern is a gait pattern

in which two legs of the robot support the main body
at any instant during locomotion. This pattern is stat-
ically unstable, and it is di�cult for the robot to sus-
tain a stable locomotion at low velocities. However,
at higher velocities, the robot can sustain stable loco-
motion with the trot pattern by using its inertia e�ec-
tively. Designing a control system for realizing stable
locomotion by changing the gait pattern to adapt to
the desired velocity or to the properties of the envi-
ronment is a subject of the research in motion control
of the quadruped locomotion robot. In order to de-
sign the locomotion controller, we need to design the
gait patterns and the motion controller. For design-
ing the gait patterns, we �rst determine the nominal
gait patterns and the trajectories of the legs to realize
the nominal gait patterns. The motion controller is
designed to realize the nominal motions of the legs.

There are two ways to design the control system
of the robot, top down approach and bottom up ap-
proach. The top down approach is based on control
theory. The design of the trajectories of the legs and
the gait patterns are implemented through optimiza-
tion based on the inverse model of the robot. The mo-
tion controllers are designed based on the linearized
model. In this system, nonlinear dynamics such as
Coriolis force are eliminated by using the computed
torque method, the nonlinear feedback method, etc
[1]. The top down approach designs the control sys-
tem based on the mathematical model of the robot
and that of the environment. Therefore, control sys-
tems designed in this way are not always robust. On
the other hand, the bottom up approach to design the
control system is based on the animal behavioral sci-
ences [2] � [4]. The animal behavioral science teaches
us that the control systems of animals make the legs re-
peat a forward and backward motion periodically if the
legs have no mechanical interaction with the ground.
It also teaches us that animals have touch sensors at
the tips of the legs and motions of the legs interact
with each other through the input signals from the
touch sensors. These interactions modify the phase
relations of periodic motions of the legs appropriately.
As a result, a gait pattern that can satisfy the require-



ments of the locomotion velocity or the properties of
the environment emerges. The bottom up approach
design is performed in the following way: First, we
introduce nonlinear oscillators in the leg controllers
and determine the periodic motion of the legs as func-
tions of the phase of the oscillators. Next, we design
the local feedback controllers of the legs that use the
nominal motions of the legs as reference signals. On
the other hand, we determine the dynamic interactions
among the nonlinear oscillators so that they interact
with each other through the input signals from the
touch sensors at the tips of the legs. The phase di�er-
ences among the nonlinear oscillators emerge through
the mutual entrainments of the oscillators. As a re-
sult, the proposed control system is expected to gen-
erate adequate and stable gait patterns corresponding
to the dynamic states of the system or to the physical
properties of the environment.

Control systems based on the bottom up approach
design have already been applied to the locomotion of
hexapod robots in some research. In such research, it
has been shown that the control system can adaptively
generate the adequate gait patterns corresponding to
the system states or to the variations of the environ-
ment. The e�ciency of the control system was also
veri�ed by hardware experiments [5]. On the other
hand, it is di�cult to design the control system of a
quadruped locomotion robot which satis�es the dy-
namic stability of locomotion. Therefore, it is also
di�cult to design the control system which can au-
tonomously generate the various gait patterns. There
is only a small amount of research based on the bot-
tom up approach that deals with the control system
of a quadruped locomotion robot [6].

This paper deals with the design method of the con-
trol system of a quadruped locomotion robot based on
the bottom up approach. The proposed control sys-
tem has a hierarchical architecture. It is composed of
the leg controller and the gait pattern controller. The
leg controller drives the actuators of the legs by us-
ing local feedback control. The gait pattern controller
involves non linear oscillators. Various gait patterns
emerge through the mutual entrainment of these oscil-
lators. The performance of the proposed control sys-
tem is veri�ed by numerical simulations and hardware
experiments.

2 Equations of motion

Consider the quadruped locomotion robot shown
in Fig. 1, which has four legs and a main body. Each
leg is composed of two links which are connected to
each other through a one DOF(degree of freedom)
rotational joint. Each leg is connected to the main
body through a one DOF rotational joint. The iner-
tial and main body �xed coordinate systems are de-

�ned as [a(�1)] = [a
(�1)
1 ; a

(�1)
2 ; a

(�3)
3 ] and [a(�1)] =

[a
(�1)
1 ; a

(�1)
2 ; a

(�3)
3 ], respectively. a

(�1)
1 and a

(�1)
3

coincide with the nominal direction of locomotion and
vertically upward direction, respectively. Each leg is
enumerated from leg 1 to 4, as shown in Fig. 1. The
joints of the leg are numbered as joint 1 and 2 from
the main body toward the tip of the leg. We de�ne

�
(0)
i (i = 1; 2; 3) as the components of Euler angle

from [a(�1)] to [a(0)]. We also de�ne �
(i)
j as the joint

angle of link j of leg i. The rotational axis of joint

j of leg i is parallel to the a
(0)
2 axis. The following

equations de�ne the position vector from the origin of
[a(�1)] to that of [a(0)].

r
(0) = [a(�1)]r(0) (1)

r(0) = [ r
(0)
1 r

(0)
2 r

(0)
3 ]T (2)

Leg 4
Leg 1

Leg 2

Leg 3

[a(�1)]

[a(0)]
Main body

r
(0)

Fig. 1 Schematic model of a quadruped locomotion
robot

The state variable is de�ned as follows;

qT =
h

_r
(0)
k !

(0)
k

_�
(i)
j

i
(3)

(i = 1; � � � ; 4); (j; k = 1; 2; 3)

Equations of motion for state variable q are derived
using Lagrangian formulation as follows;

M �q +H(q; _q) = G+
X

(�
(i)
j ) + � (4)

where M is the generalized mass matrix and the term
M �q expresses the inertia. H(q; _q) is the nonlinear
term which includes Coriolis forces and centrifugal

forces. G is the gravity term.
P
(�

(i)
j ) is the input

torque of the actuator at joint j of leg i. � is the reac-
tion force from the ground at the point where the tip
of the leg makes contact. We assume that there is no
slip between the tips of the legs and the ground.



3 Gait pattern control

The architecture of the proposed control system is
shown in Fig. 2. The control system is composed of the
leg controllers and the gait pattern controller. The leg
controllers drive all the joint actuators of the legs as to
realize the desired motions that are generated by the
gait pattern controller. The gait pattern controller in-
volves non linear oscillators corresponding to each leg.
The gait pattern controller receives the commanded
signal of the nominal gait pattern as the reference. It
also receives the feedback signals from the touch sen-
sors at the tips of the legs. The generated gait pattern
is determined by the phase di�erences between the non
linear oscillators. A modi�ed gait pattern is generated
from the nominal gait pattern through the mutual en-
trainment of the oscillators with the feedback signals
of the touch sensors. The generated gait pattern is
given to the leg controller as the commanded signal of
the locomotion pattern of the legs.

Commanded gait pattern

Gait pattern

controller

Leg controller

Commanded joint angle

Signal of the touch sensor

Fig. 2 Architecture of the proposed controller

3.1 Design of the gait

3.1.1 Design of trajectories of the legs

We determine two types of trajectories as the nom-
inal trajectories of the tip of each leg. One is the
trajectory for the swinging leg. The other is that for
the supporting leg. The position of the tip of the leg
where the transition from the swinging state to the
supporting state occurs is called the anterior extreme
position (AEP). Similarly, the position where the tran-
sition from the supporting state to the swinging state
occurs is called the posterior extreme position (PEP).
We determine the nominal trajectories which are ex-
pressed in the coordinate system [a(0)] in the following

way: First, we de�ne the nominal PEP r̂
(i)
eP and the

nominal AEP r̂
(i)
eA. The index �̂ indicates the nominal

value.
The trajectory for the swinging state is a closed

curve given as the nominal trajectory r̂
(i)
eF . This curve

involves the points r̂
(i)
eA and r̂

(i)
eP . On the other hand,

the trajectory for the supporting state is a linear tra-

jectory given as r̂
(i)
eS . This linear trajectory also in-

volves the points r̂
(i)
eA and r̂

(i)
eP . These trajectories are

given as functions of the phases of the oscillators. The
state of the oscillator for leg i is expressed as follows;

z(i) = exp(j �(i)) (5)

where z(i) is a complex number which expresses the
state of the oscillator, �(i) is the phase of the oscillator
and j is the imaginary unit.

The nominal phase dynamics of the oscillator is de-
�ned as follows;

_̂
�
(i)

= ! (6)

The nominal trajectories r̂
(i)
eF and r̂

(i)
eS are given as

functions of the phase �̂(i) of the oscillator.

r̂
(i)
eF = r̂

(i)
eF (�̂

(i)) (7)

r̂
(i)
eS = r̂

(i)
eS (�̂

(i)) (8)

We use one of these two trajectories alternatively
at every step of AEP and PEP to generate the desired

trajectory of the tip of the leg r̂
(i)
e (�̂(i)).

r̂(i)e (�̂(i)) =

8<
:

r̂
(i)
eF (�̂

(i)) 0 � �̂(i) < �̂
(i)
A

r̂
(i)
eS(�̂

(i)) �̂
(i)
A � �̂(i) < 2�

(9)

The following relationships exist between AEP and
PEP.

r̂
(i)
eP = r̂

(i)
eF (0) = r̂

(i)
eS (0) (10)

r̂
(i)
eA = r̂

(i)
eF (�̂

(i)
A ) = r̂

(i)
eS (�̂

(i)
A ) (11)
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Fig. 3 Trajectory of the leg



Duty ratio �̂(i) for leg i is de�ned to represent the
ratio between the nominal time for the supporting
state and the period of one cycle of the nominal lo-
comotion.

�̂(i) = 1�
�̂
(i)
A

2�
(12)

The nominal stride of leg i is given as follows;

Ŝ(i) = r̂
(i)
eA � r̂

(i)
eP (13)

3.1.2 Design of the gait pattern

There are three gait patterns in which two legs support
the main body at any instant during locomotion: In
the trot pattern legs 1 and 3 form one pair and legs 2
and 4 form the other pair, in the pace pattern legs 1
and 2 form one pair and legs 3 and 4 form the other
pair, �nally in the bounce pattern legs 1 and 4 form
one pair and legs 2 and 3 form the other pair.
The following relationships exist among the phase vari-
ables of the periodic motions of the legs.

Trot : �̂(1) = �̂(3); �̂(2) = �̂(4) (14)

Pace : �̂(1) = �̂(2); �̂(3) = �̂(4) (15)

Bounce : �̂(1) = �̂(4); �̂(2) = �̂(3) (16)

As can be seen from equations (14) � (16), phases
of the pairs of oscillators are coupled and the phase
di�erences between them are zero.

A shift of the phase di�erences between the coupled
oscillators by �

2 causes the gait pattern to change from
those explained above to the walk pattern (Fig. 4). For
example, the phase shift �2 of the trot pattern produces
another pattern in which the legs 1,3,2 and 4 touch on
the ground in this order. This modi�ed pattern is
called transverse walk.

In this paper, we consider the gait control method
which makes a transition from the trot pattern to walk
(or vice versa) by using an external commanded signal.

Trot pattern and walk pattern can be written as
follows;

�(i+2) = �(i) + �(m) (i = 1; 2) (17)

�(m) =

�
0 Trot (m = 2)

2�(1� �̂) Walk (m = 1)

The gait pattern is designed based on Eq.(17).

Leg 1

Leg 3

Leg 2

Leg 4

Trot Walk

Fig.4. The trot and walk patterns

3.2 Motion control

3.2.1 Leg controller

The angle of joint j of leg i is derived from the geo-

metrical relationship between the trajectory r̂
(i)
e (�̂(i))

and the joint angle. �̂
(i)
j is written as a function of

phase �̂(i) as follows;

�̂
(i)
j = �̂

(i)
j (�̂(i)) (18)

The commanded torque at each joint of the leg is
obtained by using local PD feedback control as follows;

�
(i)
j = KPj(�̂

(i)
j � �

(i)
j ) +KDj(

_̂
�
(i)

j � _�
(i)
j ) (19)

(i = 1; � � � ; 4; j = 1; � � � ; 3)

where �
(i)
j is the actuator torque at joint j of leg i, and

KPj ,KDj are the feedback gains, the values of which
are common to all joints in all legs.

3.2.2 Gait pattern controller

We design the phase dynamics of the oscillators corre-
sponding to each leg as follows;

_�(i) = ! + g
(i)
1 + g

(2)
2 (i = 1; � � � ; 4) (20)

where g
(i)
1 is the term which is derived from the nom-

inal gait pattern and g
(i)
2 is the term caused by the

feedback signal of the touch sensors of the legs.

Function g
(i)
1 is designed in the following way: We

de�ne the following potential function.

V (�(i); �(m)) = K

2X
i=1

�
�(i) � �(i+2) � �(m)

�2
(21)

where parameter �(m) represents the nominal gait pat-
tern de�ned in Eq.(17) and is given as a commanded
signal.

Function g
(i)
1 is derived from the potential function

V as follows;

g
(i)
1 = �

@V (�(i); �(m))

@�(i)

=�K
�
�(i) � �(i+2) � �(m)

�
(22)

Function g
(i)
2 is designed in the following way: First,

we consider the pair of legs i,j (i = 1; j = 3 or
i = 2; j = 4). Suppose that leg i is in the swing-
ing state and leg j is in the supporting state. The
transition of these states occurs at the instant when
the swinging leg touches the ground. Suppose that



�
(i)
A ; �

(j)
P are the phases of leg i and leg j at the in-

stant when leg i touches on the ground, respectively.

Similarly, r
(i)
eA; r

(j)
eP are the positions of leg i and leg j

at that instance, respectively. When leg i touches the
ground, the following procedure is needed.

1. The phase of the oscillator for leg i is changed

from �
(i)
A to �̂

(i)
A . On the other hand, the phase of

the oscillator for leg j is changed from �
(i)
P to 0.

2. Alter the nominal trajectory of the tip of leg i

from the swinging trajectory r̂
(i)
eF to the support-

ing trajectory r̂
(i)
eS .

3. Replace parameter r̂
(i)
eA, that is one of the param-

eters of the nominal trajectory r̂
(i)
eS , with r

(i)
eA.

4. Change the nominal trajectory of the tip of leg j

from the supporting trajectory r̂
(j)
eS to the swing-

ing trajectory r̂
(j)
eF . Also replace parameter r̂

(i)
eP ,

that is one of the parameters of the nominal tra-

jectory r̂
(i)
eS , with r

(i)
eP .

Function g
(i)
2 is given as follows;

g
(i)
2 = �̂

(i)
A � �

(i)
A at the instant leg i

touches the ground

g
(j)
2 = ��

(j)
P at the instant leg j

takes o� from the ground
(23)

The pair of oscillators form a dynamic system that
a�ect each other through two types of interactions.
One is continuous interactions derived from the poten-
tial function V which depends on the nominal gait pat-
tern. The other is the pulse-like interactions caused by
the feedback signals from the touch sensor. Through
these interactions, the oscillators generate gait pat-
terns that satisfy the requirements of the environment.

4 Stability analysis of motion

The steady locomotion of the quadruped locomo-
tion robot is strictly periodic and is characterized by
a limit cycle in the state space. In this section, the
analysis of the stability of the limit cycle in the steady
locomotion of the quadruped locomotion robot is de-
scribed.

The stability of the limit cycle is examined in the
following way: First, four variables are selected as
state variables.

X 2 R4; X =
h
�
(0)
1 �

(0)
2

_�
(0)
1

_�
(0)
2

i
(24)

When the robot starts the locomotion under a cer-
tain initial condition, the variable set X moves on a

certain trajectory in the four-dimensional state space.
If we choose a Poincar�e section using the timing when
the tip of a leg touches the ground, the �rst intersec-
tion of the trajectory of X with the Poincare section
is mapped as X0, and for every intersection, the cor-
responding values of X lead to a sequence of iterates
in the state space.

X1 X2 � � � Xn � � �

The Poincar�e map from Xn to Xn+1 is expressed
as follows;

Xn+1 = F (Xn) (25)

The �xed point X̂ is de�ned if X̂ satis�es the fol-
lowing equation on the Poincar�e section.

X̂ = F (X̂) (26)

This Poincar�e map is approximated by use of lin-
earization around the �xed point.

Xn+1 � X̂ =M(Xn � X̂) (27)

The necessary condition for the asymptotic stability
of the sequence of points fXng is that all of the eigen
values of matrixM are smaller than one in magnitude,
�k (k = 1; � � � ; 4) j�kj < 1.

5 Numerical simulation

Table 1 shows the physical parameters of the robot
which are used in numerical simulations.

Table 1

Main body
Width 0.182 [m]
Length 0.338 [m]
Height 0.05 [m]
Momentum of inertia (x) 0.010 [kgm2]
Momentum of inertia (y) 0.046 [kgm2]
Momentum of inertia (z) 0.046 [kgm2]

Legs
Length of link 1 0.026 [m]
Length of link 2 0.188 [m]
Length of link 3 0.193 [m]
Mass of link 1 0.320 [kg]
Mass of link 2 0.918 [kg]
Mass of link 3 0.595 [kg]
Momentum of inertia of link 1 1.0E-06 [kgm2]
Momentum of inertia of link 2 1.8E-02 [kgm2]
Momentum of inertia of link 3 5.1E-03 [kgm2]

Numerical simulations are implemented under the
condition that the nominal stride Ŝ and the nominal
gait pattern are �xed. The nominal duty ratio �̂ is



selected as a parameter. The dynamic stability of each

gait pattern depends on the value �̂. For example,

for �̂ = 0:5, trot, pace and bounce patterns are the

most stable dynamically, whereas for �̂ = 0:75 the
walk pattern is stable.

The trajectory of the tip of the leg is given as fol-
lows;

r
(i)
eS1 =

S

�
(i)
A

(�(i) � cos�(i)) + r
(i)
eP1 (28)

r
(i)
eS2 =

S

�
(i)
A

(1� sin�(i)) + r
(i)
eP2 (29)

r
(i)
eF1 =

S

2� � �
(i)
A

(�(i) � �
(i)
A ) + r

(i)
eA1 (30)

r
(i)
eF2 =

S

2� � �
(i)
A

(�(i) � �
(i)
A ) + r

(i)
eA2 (31)

The nominal time period of the swinging state is
chosen as 0.20 [sec]. The frequency band width of joint
1, 2 and 3 are given as 50.0 [Hz], 5.5 [Hz], 9.5 [Hz] for
feedback gains of the joints, respectively. Numerical
simulations are implemented for the walk pattern and
trot pattern.

In order to compare the performance of the pro-
posed control system, another control system is sim-
ulated in which the leg controller drives the legs as
to follow the nominal trajectories using local feedback
control. Two cases are examined by numerical sim-
ulations: One is the case where the controller uses a
�xed gait pattern and the nominal trajectories as the
desired trajectories (CASE 1). The other is the case
where the controller also uses a �xed gait pattern but
the controller is the proposed one that is explained in
Section 3 (CASE 2).

Figure 5 shows the result of the stability analysis
where we checked the motion of the robot. It is per-
formed by using the method introduced in Section 4,
based on the simulation results. It can be seen that
the proposed control system has better performance
compared with the control system that uses the nom-
inal trajectories as the desired trajectories. The pro-
posed control system established stable locomotion of
the robot with a wide parameter variance for duty ra-

tio �̂.
Figure 6 shows the gait pattern obtained as the sim-

ulation result of CASE 1. From these �gures, it can

be seen that if �̂ is varied excessively, instability oc-
curs in the �xed gait pattern. For the case where the

walk pattern is being commanded, if �̂ is decreased to
0.5 an unstable and irrhythmic pattern is promoted
(Fig. 6.a). Similarly, for the case where the trot pat-

tern is being commanded, if �̂ is increased to 0.75 the
gait pattern is still that of trot (Fig. 6.d). The reason
of the instability is that the control system of CASE 1

cannot modify the gait patterns adaptively to the vari-
ations in the locomotion velocities.
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Figure 7 shows the gait pattern obtained from the
simulation result of CASE 2. By varying the duty
ratio, the appropriate gait pattern emerges. This is
especially evident in Fig. 7.d where the trot pattern

is being commanded but �̂ = 0:75. The most sta-
ble gait pattern for this duty ratio, the walk pattern
emerges. Figure 8 indicates the correlation coe�cients
among the motion of the legs which are calculated
from the results of the simulations where the walk pat-
tern is commanded(Fig. 8.a) and the trot pattern is
commanded(Fig. 8.b). The correlation coe�cients are
given in Eq.(32), which characterize the relationships
among the motion of the legs.

From these �gures, two results are derived. The
�rst one is that both Fig. 8.a and Fig. 8.b show a sim-
ilar trend. This means that the controller behaves in a
similar fashion regardless of the commanded pattern.
The second result is that the correlation coe�cient de-
grades as duty ratio �̂ increases. However, it is known

that an increase in �̂ implies a decrease in the veloc-
ity of locomotion and vice versa. This means, there-
fore, that the control system modi�es the commanded
nominal gait pattern adaptively, corresponding to the
locomotion velocity and it also preserves the dynamic
stability of locomotion. As a result, if the walk pattern
is commanded but a high velocity is desired, the con-
trol system changes the gait pattern from walk to trot
autonomously. The reverse is also true; if the trot pat-
tern is commanded but a slow velocity of locomotion
is desired, the walk pattern is generated.

�i =

�
0 Supporting state
1 Swinging state

Wii+2 =

Z
�i�i+2dtrZ

�idt

rZ
�i+2dt

(i = 1; 2) (32)
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Fig. 7.b Gait pattern diagram(�̂ = 0:75)
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Fig. 7.c Gait pattern diagram(�̂ = 0:50)
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Fig. 7.d Gait pattern diagram(�̂ = 0:75)
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Fig. 8.a Correlation (Wii+2)(Walk)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

C
or

re
la

tio
n

Duty Ratio

Leg 1-3
Leg 2-4

Fig. 8.b Correlation (Wii+2)(Trot)

6 Hardware experiments

A picture of the hardware equipment is shown in
Fig. 9.

Fig. 9 The hardware equipment

The architecture of the hardware equipment is
shown in Fig. 10.
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Fig. 10 The architecture of the hardware equipment

The performance of the proposed control system
was veri�ed by hardware experiments. Figures 11.a

and 11.b show the e�ect of duty ratio �̂ when the
walk pattern is commanded, and Figs. 12.a and 12.b
show the same, in hardware experiments. From these
�gures, we can see that the proposed control system
has a good robustness and adaptability.
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Fig. 11.a Gait pattern diagram(�̂ = 0:65) (Walk)
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Fig. 11.b Gait pattern diagram(�̂ = 0:75) (Walk)
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Fig. 12.a Gait pattern diagram(�̂ = 0:50) (Trot)
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Fig. 12.b Gait pattern diagram(�̂ = 0:75) (Trot)

7 Conclusions

We proposed a control system with a hierarchical
architecture which is composed of the leg controller
and the gait pattern controller. The leg controller
drives the actuators at the joints of the legs by use
of high-gain local feedback based on the commanded
signal from the gait pattern controller. Whereas the
gait pattern controller alternates the motion primi-
tives synchronizing with the signals from the touch

sensors at the tips of the legs, and stabilizes the phase
di�erences among the motions of the legs adaptively.
The performance of the proposed control system was
veri�ed by numerical simulations and hardware exper-
iments.
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