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Abstract
This paper proposes an algorithm for a nonlin-

ear optimization problem utilizing replicator equa-
tions. The problem is to Þnd the global minimum
of a multivariate function in which each variable
has a bounded feasible region. First, the feasible re-
gion of each variable is discretized and expressed
as a set of nodes, and the feasible region of the
problem is expressed as a set of combinations of
the nodes, i.e. grid points. Then, the replicator
equations are constructed with the elements which
are put on the nodes. The growth rates are com-
posed of the objective function and constraints; by
increasing the parameter in the growth rate, equi-
librium solutions corresponding to the grid points
bifurcate successively in order, from the one hav-
ing the smallest value of the function to the largest
one. Lastly, an algorithm for a nonlinear optimiza-
tion problem combining the deterministic annealing
based on the successive bifurcation of the replicator
equation and the sequential quadratic programming
is developed. The algorithm is applied to the func-
tion of Fletcher & Powell, which has a lot of local
minima and it is difficult to obtain the global min-
imum, and its performance is veriÞed.

1 Introduction
A lot of global search methods for nonlinear opti-

mization problem have been studied. The methods
are classiÞed into two groups, i.e. exact methods
and heuristic methods. The former give the ex-
act optimal solution with the guarantee of the op-
timality, but because of the computational costs, is
practically impossible to be applied to large scale
problems. On the other hand, the heuristic meth-
ods do not guarantee the optimality of the solu-
tion obtained, but give a good approximate solu-
tion in relatively short time. Among the heuristic
methods, the optimization methods which utilize
dynamical systems are studied. One of the meth-
ods is the artiÞcial neural network model [1, 2]; as
the dynamical system, the gradient vector Þeld of
the potential function composed of the objective
function and the constraints is utilized. An ap-
proximate solution of the optimization problem is

obtained as a stable equilibrium solution of the sys-
tem. In order to improve the solution, the deter-
ministic annealing is applied [3, 4]. We have pro-
posed another model of the method which utilizes a
dynamical system [5, 6]; as the dynamical system,
a replicator equation [7] is utilized instead of a gra-
dient vector Þeld. The replicator equation is the
equation where the derivatives of the variables are
proportional to the state of the variables (the pro-
portional coefficient is called the growth rate). The
replicator equation shows successive bifurcations by
increasing the value of a parameter in the growth
rate. We construct the growth rate using the ob-
jective function and the constraints so that equilib-
rium solutions corresponding to the approximate
solutions of the problem with high performance
become stable earlier than those with low perfor-
mance through successive bifurcations. The deter-
ministic annealing based on the bifurcation char-
acteristics is applied to improve the solution. In
Refs. [5, 6], the proposed method has been applied
to the combinatorial optimization problem and it
was demonstrated that a good approximate solu-
tion can be obtained. In this paper, the proposed
method is applied to a nonlinear optimization prob-
lem. The problem is to Þnd the global minimum of
a multivariate function in which each variable has
a bounded feasible region. The method is applied
to the function of Fletcher & Powell [8], which has
a lot of local minima and therefore it is difficult to
obtain the global minimum solution, and then its
performance is veriÞed.

This paper is organized as follows. In Sec. 2,
the formulation of the problem is explained in de-
tail. In Sec. 3, the dynamical system is constructed,
and the stabilities of the equilibrium solutions and
the bifurcation characteristics are analyzed. In
Sec. 4, based on the analyses, the algorithm com-
bining the deterministic annealing and the sequen-
tial quadratic programming [9] is proposed. In
Sec. 5 results of the numerical analysis are shown.
And in Sec. 6, we brießy state the conclusions and
the future works.



2 Formulation of the Problem
Consider the following nonlinear continuous op-

timization problem

min
{xi}

L(x1, · · · , xN), (1)

subject to

xLi ≤ xi ≤ xUi (i = 1, · · · , N). (2)

The objective function L is expressed as

L =
X
m

L(m)(xi1 , · · · , xinm
), (3)

L(m) =
Y
l

L
(m)
l (xi1 , · · · , xil), (4)

where nm is the number of variables included in
L(m), and L(m)

l , L(m)
l0 (l 6= l0) do not include the

same variable.
First, we reformulate the above nonlinear opti-

mization problem as a combinatorial optimization
problem. The feasible region of the variable xi is
discretized into K nodes, xi1(= x

L
i ), xi2, · · · , xiK(=

xUi ). The feasible region of the decision variables
are expressed as a set of grid points {xij}. On the
other hand, element Sij which takes values 0 or 1 is
put on the node xij. A state of the elements deÞnes
a grid point in the feasible region as

xi = xip(i) if Sij =

½
1 (j = p(i))
0 (j 6= p(i)) (∀i), (5)

where p = {p(1), · · · , p(N)} is a series of integer
which satisÞes 1 ≤ p(i) ≤ K. A new objective
function J(Sij) is deÞned as

J(Sij) =
X
m

1

nm

"Y
l

KX
ji1 =1

· · ·
KX

jil
=1

L
(m)
l (xi1ji1

, · · · , xiljil
)Si1ji1

· · ·Siljil

#
.(6)

The nonlinear optimization problem (1) is, then, re-
formulated as the combinatorial optimization prob-
lem,

min
{Sij}

J(Sij), (7)

subject to

Sij ∈ {0, 1},
X
j

Sij = 1 (∀i). (8)

3 Dynamical System and Stabilities
of Equilibrium Solutions

3.1 Dynamical system [5]
For the problem (7), we set the replicator equa-

tion as follows:

úuij = fijuij , (9)

fij = (1− u2
ij)− α0

X
j0 6=j

u2
ij0 − α1λij , (10)

(i = 1, · · · , N ; j = 1, · · · , K)
where parameters are α0 > 0 and 0 ≤ α1 ¿ 1, and
λij is deÞned as follows:

1

2

∂J(u2
i0j0)

∂uij
≡ λijuij . (11)

The growth rate fij is composed of three terms.
The Þrst one expresses the self activatory and in-
hibitory inßuences and leads each u2

ij to unity. The
second one expresses the mutual inhibitory interac-
tions between the elements with the same subscript
i, i.e. the elements belong to the same variable xi.
The third one expresses the inhibitory inßuence due
to the objective function and suppresses solutions
with larger values of the objective function.

3.2 Equilibrium solutions and their sta-
bilities

Equilibrium solutions of the dynamical system
(9) are classiÞed as follows:

� uniform solution:

u2
ij 6= 0 (∀i, j). (12)

� feasible solution:

u2
ij

½ 6= 0 (j = p(i))
= 0 (j 6= p(i)) (∀i). (13)

Each of the feasible solutions deÞnes a grid
point (x1p(1), · · · , xNp(N)) in the feasible re-
gion.

� transition solution:
all the other equilibrium solutions. (14)

The results of the stability analysis of the equi-
librium solutions are summarized as follows:

1. If α0 and α1 are sufficiently small, only the
uniform solution is stable.

2. If α1 is small and α0 > 1, only the feasible
solutions are stable.

3. The stability condition for each feasible solu-
tion is approximately given by the following
inequality:

α0 > 1 +
α1

N

¡
Lp − L̄p¢ , (15)

Lp = L(x1p(1), · · · , xNp(N)), (16)

L̄p =
NX
i=1

X
i

m

1

nm

1

K − 1
X
j 6=p(i)

L(m)(xi1p(i1),· · ·, xij ,· · ·, xinmp(inm )),(17)



where
P

i
m

means excluding the terms not in-

cluding xi from the summation
P
m
. Lp is the

value of the objective function at the grid point
in the feasible region corresponding to the fea-
sible solution, and L̄p is the mean value of Lp

in some neighborhood of the solution. Here we
set the assumption,

1. the value of L̄p is almost constant. (18)

Under the assumption (18), the second term of
the right hand side of Eq. (15) is proportional
to the value of Lp, and this means that the
feasible solutions become stable successively in
order of the value of the objective function.
The assumption (18) and the stability condi-
tion (15) are checked numerically in Sec. 5.

3.3 Bifurcation characteristics

The bifurcation characteristics of the dynamical
system (9) with the parameter α0 as the control
parameter are analyzed.
Consider an equilibrium solution uij = ūij . So-

lution ūij changes its stability at α0 = ᾱ0. Intro-
duce vector F and matrix DuF as

F = [f11u11, · · · , f1Ku1K , f21u21, · · ·]T (19)

: right hand side of Eq. (9),

DuF = [∂Fij/∂ukl] (20)

: Jacobian matrix of F .

We set the following assumptions:

1. fi1j1(ū, ᾱ0) = 0 and ūi1j1 = 0 only for
the pair (i1, j1).

2. Zero eigenvalue of DuF is simple.

(21)

Under the assumption (21), there are three types of
bifurcations that may occur in the dynamical sys-
tem (9), i.e. saddle-node, transcritical and pitch-
fork bifurcations. Letting v, w be the left and right
eigenvectors corresponding to the zero eigenvalue
of DuF (ū, ᾱ0), the necessary conditions for these
three types of bifurcation are as follows [10]: saddle-node: c1 6= 0, c2 6= 0

transcritical: c1 = 0, c2 6= 0, c3 6= 0
pitchfork: c1 = 0, c2 = 0, c3 6= 0, c4 6= 0

(22)

where

c1 = w(Dα0F (ū, ᾱ0)), (23)

c2 = w(D
2
uF (ū, ᾱ0)(v, v)), (24)

c3 = w(Dα0
DuF (ū, ᾱ0)(v)), (25)

c4 = w(D
3
uF (ū, ᾱ0)(v, v, v)). (26)

In this case, the eigenvectors are

vT = w = [0, · · · , 0,
(i1,j1)
∨
1 , 0, · · · , 0], (27)

and parameters ci are calculated as follows:

c1 =
∂Fi1j1

∂α0
(ū, ᾱ0) = −ūi1j1

X
j0 6=j1

ū2
i1j0 = 0, (28)

c2 =
∂2Fi1j1

∂u2
i1j1

(ū, ᾱ0) = −6ūi1j1
= 0, (29)

c3 =
∂2Fi1j1

∂α0∂ui1j1

(ū, ᾱ0) = −
X
j0 6=j1

ū2
i1j0 6= 0, (30)

c4 =
∂3Fi1j1

∂u3
i1j1

(ū, ᾱ0) = −6 6= 0. (31)

From the results (28)�(31), only the pitchfork bi-
furcations may occur in the dynamical system (9).
Moreover, as well as the case of Ref. [6], by in-
creasing the value of α0, the uniform solution Þnally
connects with a feasible solution through pitchfork
bifurcations and the feasible solution may not be
the optimal solution but, in many cases, a good
approximate solution.

4 Optimization Algorithm
Based on the above analyses, the optimization

algorithm is proposed (Fig. 1). The solution of the
deterministic annealing (Step 1—3) determines a
grid point in the feasible region, and the Sequential
Quadratic Programming (SQP) [9] obtains the Þ-
nal solution with the grid point as the initial point
(Step 4).
Consequently, the Þnal solution is the minimum

of the objective function nearest to the grid point
obtained by the deterministic annealing.

5 Numerical Analysis
First, numerical analysis is carried out to check

the assumption (18) and the stability condition
(15). The objective function used here is the func-
tion of Fletcher & Powell [8]:

L(x) =
NX
i=1

(Ai −Bi)2, (32)

Ai =
NX
j=1

(aij sinαj + bij cosαj), (33)

Bi =
NX
j=1

(aij sinxj + bij cosxj), (34)

−π ≤ xi ≤ π, (35)

aij , bij ∈ [−100, 100]; αj ∈ [−π, π], (36)



Deterministic annealing

Step 1: Set α1 and α0 sufficiently small and
compute the dynamical system (9) with ran-
dom initial values to obtain the uniform so-
lution.

Step 2: Slightly increase the value of α0, and
compute (9) with the solution of the previ-
ous iteration as the initial value to obtain the
equilibrium solution.

Step 3: Go to step 2 until the feasible solution
is obtained.

⇓
SQP

Step 4: Apply the SQP with the grid point ob-
tained by the deterministic annealing as the
initial point.

Figure 1: Optimization algorithm.

where aij , bij,αj are random numbers given in
Ref. [8]. This function has the obvious optimal so-
lution L(x) = 0 at x = α.
With N = 10 and K = 100, the values of Lp

and L̄p are calculated at 100,000 grid points ran-
domly generated. The results are shown in Fig. 2.
This shows that the value of L̄p is almost constant
against the value of Lp.
The dynamical system (9) is calculated at many

points on α0�α1 plane with 50 sets of random initial
values. The contours of the mean value of Lp for
the obtained feasible solutions are shown in Fig. 3.
Figure 3 indicates that only the feasible solutions
having small values of the objective function exist
in the region where α0 is small, and is consistent
with the stability condition (15) qualitatively; this
means that by increasing the value of α0, the fea-
sible solutions become stable successively in order,
from the one having the smallest value of the ob-
jective function to the largest one.
Next, the performance of the proposed algorithm

is veriÞed. The function (32) is used again. The
results obtained by the algorithm with N = 2, K =
100 are shown in Figs. 4,5. Figure 4 shows the
change of the grid point on x1�x2 plane, where the
grid point corresponding to the equilibrium solution
at each iteration is given by

xi = xij if u2
ij = max

j
u2
ij (∀i). (37)

Figure 5 shows the change of the value of the ob-
jective function at the grid point during the pro-
cess of the annealing. In Fig. 5, the value of objec-
tive function increases Þrst, and then decreases; as

L̄
p

Lp

Figure 2: The value of L̄p as a function of Lp.

Figure 3: Contours of the mean values of the ob-
jective function Lp on α0�α1 plane.

shown in Fig. 4, the solution changes slightly in one
of the four valleys of the objective function at the
beginning of the annealing and then after jumping
into another one, the solution converges to the grid
point nearest to the optimal solution.

The results for N = 30, K = 100 are shown in
Fig. 6 and Table 1. As shown in Fig. 6, the value
of the objective function decreases as a whole dur-
ing the annealing process and Þnally reaches to the
optimal one by the SQP. As shown in Table 1, the
value of the objective function was 673.5 for the
grid point obtained by the deterministic annealing,
and the computational time for the annealing was
about 2 min. And the optimal solution x = α was
obtained by the SQP with the grid point as the
initial point. The computational time for the SQP
was 2.76 sec. The distance between the grid point
obtained by the annealing and the Þnal solution
was less than 2π/(K−1), the distance between the
nodes, for each variable. This means that the de-



Figure 4: Change of the grid point on x1�x2 plane
(N = 2, ×: global minimum, +: local minima, and
�: local maxima).

Figure 5: Change of the value of the objective func-
tion (N = 2 and the x-axis is the number of updates
of α0).

terministic annealing gave an almost optimal grid
point, which was good enough for the initial point
for the SQP.

Finally, for comparison, we applied the original
SQP to the objective function (32). MATLAB Op-
timization Toolbox is used with 10000 sets of initial
values randomly chosen from the interval [−π, π].
Figure 7 is the histogram of the results. The av-
erage number of function evaluations was 248, and
the total computational time for 10000 trials was
44326 sec. The mean value of the objective function
was L = 965189 and the optimal value (L < 10−4)
was obtained four times among 10000 trials. There-
fore the computational time for one optimal solu-
tion is 11081.5 sec.

Figure 6: Change of the value of the objective func-
tion (N = 30, the x-axis is the number of updates of
α0 and the arrow indicates the change of the value
by the SQP).

Table 1: Result of the optimization algorithm.

Deterministic annealing

L iterations� CPU time∗

673.5 35673 122.9 [s]
⇓
SQP

L iterations� CPU time∗

< 10−6 352 2.76 [s]

�number of iterations of the dynamical system (9).
∗on COMPAQ AlphaStation XP900.
�number of function evaluations.

6 Conclusion
In this paper, we proposed an algorithm for a

nonlinear optimization problem, in which the fea-
sible region of the decision variables are bounded.
The each feasible region are expressed as a set of
Þnite nodes, and the feasible region of the problem
is expressed as a set of combinations of the nodes,
i.e. grid points. The replicator equations are con-
structed with the elements put on the nodes. It was
shown that by increasing the value of the control
parameter in the system, the equilibrium solutions
corresponding to the grid points become stable suc-
cessively in order, from the one with the smallest
objective function value to the largest one. It was
also shown that only pitchfork bifurcations occur
in the dynamical system as long as the assump-
tions (21) hold. Based on the analyses, the algo-
rithm combining the deterministic annealing and
the Sequential Quadratic Programming (SQP) was
proposed and veriÞed numerically. The results of
the numerical experiments showed that the deter-



Figure 7: Results of the SQP.

ministic annealing, the Þrst stage of the algorithm,
gives the grid point sufficiently close to the optimal
solution in relatively short time, and with the grid
point as the initial value, the SQP gives the optimal
solution.
In the formulation of the problem here, the fea-

sible region is expressed as a set of Þnite grid
points. To obtain the optimal grid point by enu-
meration, the computational complexity is about
O(KN ), whereN is the number of the decision vari-
ables and K is the number of the nodes. But, in
the proposed algorithm, the global search was car-
ried out with computational complexity of O(KN0),
where N0 is the maximum number of decision vari-
ables included in L

(m)
l of Eq. (4). If N0 is large,

the computational time increases. In this case, it is
necessary to reduce the computational time. The
detailed study is presently in progress.
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