
A Markov Chain Monte Carlo Algorithm

for the Quadratic Assignment Problem

Based on Replicator Equations

Takehiro Nishiyama, Kazuo Tsuchiya, and Katsuyoshi Tsujita

Dept. of Aeronautics and Astronautics, Graduate School of Engineering,
Kyoto University, Kyoto, Japan

{nisiyama, tsuchiya, tsujita}@kuaero.kyoto-u.ac.jp

Abstract. This paper proposes an optimization algorithm for the Quad-
ratic Assignment Problem (QAP) based on replicator equations. If the
growth rate of a replicator equation is composed of the performance in-
dex and the constraints of the QAP suitably, by increasing the value
of the control parameter in the growth rate, the equilibrium solutions
which correspond to the feasible solutions of the QAP become stable in
order from the one with smaller value of the performance index. Based
on the characteristics of the system, the following optimization algorithm
is constructed; the control parameter is set so that the equilibrium so-
lutions corresponding to the feasible solutions with smaller values of the
performance index become stable, and then in the solution space of the
replicator equations, a Markov chain Monte Carlo algorithm is carried
out. The proposed algorithm is applied to many problem instances in
the QAPLIB. It is revealed that the algorithm can obtain the solutions
equivalent to the best known solutions in short time. Especially, for some
large scale instances, the new solutions with the same cost as the best
known solutions are obtained.

1 Introduction

The Quadratic Assignment Problem (QAP) [1] is one of the hardest combina-
torial optimization problems. The QAP is formulated as a problem to find a N
dimensional permutation matrix which minimizes a performance index, where N
is the size of the problem. Among approximation methods for the QAP, there are
dynamical systems approaches; a dynamical system consisting of the elements of
a N × N matrix is constructed. The mutual interactions between the elements
are determined so that equilibrium solutions of the system become permutation
matrices with smaller values of the performance index, i.e. approximate solu-
tions for the QAP. In many studies, the dynamical system is constructed as
a gradient system [2, 3]; a potential function is composed of the performance
index and the constraints, and the dynamical system is constructed as a gradi-
ent vector field of the potential function. The system has equilibrium solutions
as the minima of the potential function which correspond to the approximate
solutions of the QAP. On the other hand, we have constructed the dynamical



system as a replicator equation [4]. The replicator equation is the equation in
which derivatives of the variables are proportional to the state of the variables.
The proportional coefficients are called growth rates. When the growth rates
are determined based on the performance index and the constraints of the QAP
suitably, the system has the following characteristics; all feasible solutions of the
QAP are the equilibrium solutions of the system. By increasing the value of the
parameter (control parameter) in the growth rate, the feasible solutions become
stable in order, from the one having the smallest value of the performance index
to the largest one. This means that when the control parameter is set suitably,
the dynamical system has only solutions with smaller values of the performance
index as the stable solutions. In this paper, we propose the following Markov
chain Monte Carlo algorithm based on the characteristics of the replicator equa-
tions; the growth rates of the replicator equations are designed based on the
performance index and the constraints of the QAP. The control parameter in
the growth rate is set so that the equilibrium solutions corresponding to the
feasible solutions with smaller values of the performance index become stable.
The replicator equations are calculated with some initial values to obtain an
equilibrium solution. Then, setting the initial values in some neighborhood of
the solution, the replicator equations are calculated again to obtain the next
equilibrium solution. The obtained solution is accepted according to some prob-
ability. This procedure is repeated to give a sequence of solutions. The proposed
algorithm is applied to some problem instances in the QAPLIB [5], and in many
cases, gives solutions comparable to the best known solutions. Especially, for
some large scale instances, the proposed algorithm gives new solutions having
the same values of the performance index as the best known solutions. Haken et
al. have proposed an optimization algorithm based on the replicator equations
[6]. But in their method, the above-mentioned characteristics of the equilibrium
solutions of the replicator equations are not used explicitly. On the other hand,
Ishii and Niitsuma have proposed a dynamical systems approach in which the
search space is restricted [7]. But their method does not utilize the characteris-
tics that the search space is composed of the good approximate solutions of the
QAP which our method utilizes to improve the performance.

2 Quadratic Assignment Problem (QAP)

The Quadratic Assignment Problem (QAP) [1] is considered one of the hardest
combinatorial optimization problems. Given a set N = {1, 2, · · · ,N} and N×N
matrices A = (aij),B = (bkl), the QAP is defined as follows:

min
p∈ΠN

L(p), L(p) =
X
i,j

aijbp(i)p(j), (1)

where ΠN is the set of all permutations of N , and p is an element of it. Letting
ΠN×N the set of all N ×N permutation matrices and X = (xij) an element of



it, the QAP is also represented as the following matrix form:

min
X∈ΠN×N

L(X), L(X) = trace(ATXTBX) =
X

i,i0,j,j0
ajj0bii0xijxi0j0 . (2)

A typical example of the QAP is the facility location problem; consider assigning
N facilities toN locations, where aij represents the flow of materials from facility
i to facility j and bkl is the distance from location k to location l. The cost of
assigning facility i to location k and facility j to location l is aijbkl. The objective
of the problem is to find an assignment of all facilities to all locations such that
the total cost is minimized.

3 Proposed Dynamical System and Its Characteristics [4]

For the QAP, we have proposed the following replicator equation:

u̇ij = fij(ui0j0 ,α0,α1)uij, (3a)

fij = (1− u2ij)−
α0
2

³X
i0 6=i

u2i0j +
X
j0 6=j

u2ij0
´

− α1
2

X
i0,j0
(ajj0bii0 + aj0jbi0i)u

2
i0j0 (3b)

(i, j = 1, · · · ,N),

where fij is called the growth rate, and the parameters are α0 > 0, 0 ≤ α1 ¿ 1.
The first term of the growth rate fij leads each u

2
ij to unity. The second term

represents the competition between elements having same subscripts i (j), and
the parameter α0 determines the strength of the competition. The third term is
derived from the gradient of the performance index:

1

2

∂L(U)

∂uij
=
X
i0,j0
(ajj0bii0 + aj0jbi0i)u

2
i0j0uij, (4)

where U = (u2ij), and suppresses the solutions having larger values of the per-
formance index.
The dynamical system (3) has equilibrium solutions u

(p)
ij (p ∈ ΠN ):

u
(p)2
ij

½' 1 (i = p(j))
= 0 (i 6= p(j)) (∀i). (5)

The solutions U (p) = (u
(p)
ij ) are called the feasible solutions which corresponds

to permutation matrices X(p) = (x
(p)
ij ):

x
(p)
ij

½
= 1 (i = p(j))
= 0 (i 6= p(j)) (∀i). (6)



(a) α0 = 1.01

(b) α0 = 3.0

Fig. 1. Distribution of the feasible solutions (Lopt is the optimal value of L)

The stability condition for a feasible solution U (p) corresponding to a per-
mutation matrix X(p) is approximately given as follows:

α0 > 1 +
α1

N − 1(L(X
(p))− L̄), L̄: constant (7)

The condition (7) indicates that when α0 is close to 1, only feasible solutions
having smaller values of the performance index L, i.e. good approximate solutions
of the QAP, are stable.

To verify the stability condition (7), the dynamical system (3) is computed
with many sets of random initial values using a problem instance called “Nug20”
(N = 20) in the QAPLIB [5]. Figures 1 (a), (b) are the results for α0 = 1.01 and
α0 = 3.0 respectively. In the case of α0 = 1.01, only good solutions are obtained
as compared with the case of α0 = 3.0.



1. M := size of the neighborhood
2. T0 := initial temperature
3. X (p0) := initial permutation matrix
4. n := 0 (iteration)
5. α0 := 1 + ² (²¿ 1)
6. while n < nmax do
6.1. Choose M rows and columns randomly in the matrix U
6.2. Give random initial values to the corresponding M ×M elements uij

where the rest of the elements are fixed to the value of U (pn)

6.3. Calculate (3) to obtain the equilibrium solution U (pn+1) and corre-
sponding permutation matrix X (pn+1). If the solution is not feasible,
go back to Step 6.1

6.4. Apply 2-opt method to X (pn+1)

6.5. Accept X (pn+1) with probability e−[L(X
(pn+1))−L(X(pn))]+/Tn , where

[a]+ = max{a, 0}. If rejected, X (pn+1) := X(pn), U (pn+1) := U (pn)

6.6. Tn+1 = b · Tn (b < 1)
6.7. n := n + 1

Fig. 2. Algorithm

4 Optimization Algorithm

Based on the above analysis, we propose an optimization algorithm for the QAP
using the Markov chain Monte Carlo algorithm.

First, the search space is constructed as follows; the replicator equation (3)
is derived according to the given QAP. The control parameter α0 is set close to
1 so that (3) has stable equilibrium solutions U (p) corresponding to permutation
matrices X(p) with smaller values of the performance index of the QAP. The
search space is composed of these stable equilibrium solutions U (p). Next, given
a solution U (pn) corresponding to the permutation matrix X(pn), new solution
U(pn+1) is searched in the ‘M -neighborhood’ of the current solution as follows;
M rows and columns are randomly chosen in the matrix U of (3). Random values
are given to the corresponding elements uij as the initial values and then (3)
is calculated, where the rest of the elements are fixed to the values of U(pn).
The new solution U (pn+1) and the corresponding permutation matrix X(pn+1)

are obtained. A local search method called the 2-opt method is applied to the
obtained solution. The 2-opt method is a simple heuristic method and adopted
to slightly modify the solution to be the local minimum in the 2-neighborhood
of the solution. The new solution X(pn+1) is accepted or rejected based on the
Metropolis method [8]; if the performance index value is decreased by the change
of the solution, the new solution is accepted, and if the value is increased, the new
solution is accepted with the probability exp(−∆L/T ) according to the amount
of the increase ∆L. The parameter T called the temperature is decreased every
step of the algorithm by multiplying a constant b (< 1). The whole procedure of
the proposed algorithm is shown in Fig. 2.



Table 1. Solutions of the proposed algorithm (%)

M Mean Standard deviation Minimum

5 0.014 0.022 0
10 0.0021 0.0019 0
15 0.015 0.027 0

Table 2. Solutions of the proposed algorithm with dynamics and without dynamics
(random) (%)

Mean Standard deviation Minimum

Dynamics 0.0021 0.0019 0
Random 0.015 0.017 0

This algorithm is not a true simulated annealing [9] in two respects. First,
since the new solution is searched in theM-neighborhood of the current solution
among the stable equilibrium solutions of (3), the ergodicity does not always
hold. Second, since the obtained solution is modified by the 2-opt method in
each step of the algorithm, the detailed balance is not satisfied. Therefore, the
convergence properties of the proposed algorithm are not guaranteed. But, nu-
merical experiments mentioned below reveal that the algorithm can obtain good
solutions for many instances in the QAPLIB.

5 Numerical Experiments

Numerical experiments are carried out using some large scale problem instances
in the QAPLIB. First, the effect of the size M of the neighborhood was checked
using an instance “Wil100” (N = 100). The parameters are α0 = 1.01,α1 =
0.003, b = 0.99995, nmax = 50000, and T0 = 300.0. The resulted means, standard
deviations and minima of ten separate trials for each of M = 5, 10, 15 are shown
in Table 1. These values are the relative differences 100(L−Lopt)/Lopt (%) from
the best known solution Lopt. The best result was obtained when M = 10. The
reason is considered that good parts of the solution may be changed when a new
solution is obtained if M is too large. But it is necessary to consider further
about the optimum value of M . Next, we compared the proposed method with
the method where the new solution is randomly generated in the neighborhood
of the current solution. The computation was carried out using the problem in-
stance “Wil100” with M = 10. The results are shown in Table 2. The proposed
algorithm gives better performance on average. This indicates that the proposed
method searches effectively in the relatively large neighborhood using the dynam-
ical system. Finally, the performance of the proposed algorithm was verified using
some large scale problem instances in the QAPLIB, i.e. “Sko100a”, “Sko100b”,



Table 3. Performance

Name N Lopt (algorithm) L Difference(%)

Sko100a 100 152002 (GEN) 152002 0
Sko100b 100 153890 (GEN) 153890 0
Sko100f 100 149036 (GEN) 149036 0
Tai100a 100 21125314 (Re-TS) 21146176 0.099
wil100 100 273038 (GEN) 273038 0
Tho150 150 8133484 (SIMJ) 8135474 0.024

“Sko100f”, “Wil100”, “Tai100a” (N = 100) and “Tho150” (N = 150). The re-
sults are shown in Table 3, where Lopt is the best known solution given in the
QAPLIB and in the parentheses the name of the algorithms which gave the so-
lutions, i.e. Genetic Hybrids (GEN), Reactive Tabu Search (Re-TS), Simulated
Jumping (SIMJ), are shown. L is the solution by the proposed algorithm and
in the last column the relative difference from Lopt is shown. The solutions hav-
ing the same values of the performance index as the best known solutions were
obtained for the four of the six problem instances. 1

In the proposed method, since the size of the neighborhood is set toM(∼ 10),
the dynamical system with only M ×M elements is calculated even if the size
of the problem is N(∼ 100). Therefore the computation time for one step of
the algorithm is very short. On a COMPAQ AlphaStation XP900 computer, the
total computation time for 50000 steps of the algorithm was only about 1—2
hours.

6 Conclusion

In this paper, we proposed a Markov chain Monte Carlo algorithm based on
the replicator equations. In the proposed dynamical system, only good approxi-
mate solutions are obtained by appropriately setting a control parameter in the
system. Therefore, using the system, good solutions are efficiently searched in
relatively large neighborhood in each step of the algorithm. The proposed al-
gorithm is applied to some large scale benchmark problems of the QAP. It was
shown that the algorithm can obtain the solutions equivalent to the best known
solutions in short time. Especially, the new solutions with the same performance
index values as the best known solutions were obtained for some problem in-
stances.
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