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Abstract

This paper deals with the attitude control of a rigid spacecraft with two re-
action wheels. First, we derive a discontinuous state feedback law based on
Lyapunov control. When the angular momentum of the system is zero, the
derived controller makes the desired point the only stable equilibrium point of
the system. Next, we investigate the behavior of the controlled system when
the angular momentum is not zero but small.

Introduction

Two types of actuators, gas jet thrusters and reaction wheels, are commonly
used for attitude control of spacecraft. These actuators are usually located to
produce three independent torques about the principal axes of inertia of the
spacecraft. Is the attitude control still possible when a fault of actuators occurs
and a torque about one of the axes is disabled? This question is important
from a practical point of view. In the case of reaction wheels, the system can
be expressed as a nonholonomic system where the angular velocities of the
wheels are control inputs [1],[2].

In this paper, attitude control of a spacecraft with two reaction wheels 1is
discussed. First, we design a controller by extending the Lyapunov method [3]
under the condition that the angular momentum of the system is zero. From a
practical point of view, it is important to examine the influence of the residual
angular momentum of the system on the performance of the controller. Next,
the behavior of the controlled system is investigated in detail for the case
where the angular momentum is not zero but small. In this case, the system
converges to either a limit cycle or an equilibrium point which 1s not the desired
point, but, in both cases, the error in attitude remains small.



Basic equation

We consider a spacecraft composed of
three rigid bodies, the main body and two
wheels, as shown in Fig. 1. The main
body and the wheels are labeled as body
0, 1 and 2, respectively. We introduce a
frame {a(~1)} fixed in an inertial space and
a frame {a(} fixed in body i (i = 0,1,2).
The origin of {a(”)} is the total center of

mass of the three bodies and can be assumed to be identical with the origin
of {a(_l)}. In this system, the angular momentum of the total system is
conserved:

Figure 1: Schematic model of
a spacecraft with two reaction
wheels

Jiw O™ 45101 2 + jabfazs = ACVH, (1)
where

J; O inertia of the total system about the origin of {a(?)} expressed in
the frame {a")} | J, = diag{J;1, Ji2, Ji3}

Hy O residual angular momentum of the total system about the origin of
{al®} expressed in the frame {a(~1}

zwi O rotation axis of wheel i expressed in the frame {a(")} (i = 1,2)
21 =[1,0,07 | 242 =10,1,0]"

Ji O inertia of wheel ¢ about the rotation axis (i = 1,2)

6; O angle of rotation of wheel ¢ (i = 1,2)

w(®=1 - angular velocity of {a(®)} with respect to {a{~D} expressed in
the frame {a(®}
A0=1 4 coordinate transform matrix from {a(-1} to {a(®}

The equation for the rotation angles of the wheels is obtained as follows:
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where 7; is the torque that drives wheel ¢ (i = 1,2), P = diag{j1(1—j1/Jt1), j2(1—
j2/Jr2)}, and pT is defined as p¥ = px for p € R3.

In this paper, the Euler parameters are used for expressing the attitude of the
main body of the spacecraft: ey = cos(¢/2), e = [e1,eq,e3]T = asin(¢/2),
where €2 + €2 + €2 + e = 1. The derivatives of the Euler parameters become

é=(1/2) - (el — &)™~ Y = (1/2) - Qu®~Y | (3)

When the variables 91 and 92 are transformed to the variables u; and wus as
wi = —(Ji/Ju) - 0; (i =1,2), Eq.(1) can be rewritten in the form as

w O = [uy, us, 0] + J7PAC D, (4)

We make the following assumptions: The residual angular momentum Hy is
zero, w1 and us are input variables of the system, and the Euler parameters e



are the controlled variables. Based on Eqs.(3) and (4), the basic equation for
controller design becomes

1 € —€3 u
e =— €3 eo [ 1]EBU. (5)

The controller design

We have proposed a method to design a controller for a class of nonholonomic
systems based on Lyapunov control [3]. A Lyapunov function is introduced as
V(e) = (1/2) - (e2 + €% + €3), and the input vector is constructed as follows:

u=—(al — (Bes/g*) - J)BT'VV | (6)

where o and 3 are positive constants, V = [0/de1,d/des, d/0e3]",

1 0 0 1 1
f:[o 1] | J:[_l 0] =BTV = e flei ) ()

When Eq.(6) is used as input, the basic equation, Eq.(5), becomes
¢ = —B(al — (Bes/g*) - J)BT'VV . (8)

The analysis that was conducted in a similar way as in [3] shows that the system
described by Eq.(8) converges to the origin exponentially. In the following, this
result 1s summarized briefly.

With Eq.(8), the derivative of V (t) is computed as V = —a|BTVV|? < 0.
Therefore, the controlled system converges to the line, BYVV = 0, which
coincides with the e axis, e = (0,0, e3), from Eq.(7). Since Eq.(8) is discon-
tinuous on the axis, we modify Eq.(8) as follows:

¢ = —B(al — (Bes/g?) - tanh(g? /) J)BTVV . (9)

When ¢ is a small positive constant, by linearizing Eq.(9) near the es axis, the
stability of the system on the es axis is revealed as follows: |es| < \/ae/f <—

stable focus, |es| > \/ae/ <= unstable focus. As e approaches zero, Eq.(9)
approaches Eq.(8) and the origin becomes the only stable equilibrium point
of the system. In the neighborhood of the origin, from Eq.(8), the approx-
imate solutions of the variables e3 and ¢ can be obtained as es = Che™ Pt |
9= /Che T + 30777 [(a — 48) (when a # 48) or \/(Ch + BCTL/ 2"
(when o = 45), where Cyy and C) are constants. From these solutions, the sys-
tem converges to the origin exponentially. By taking account of the oscillation
and the magnitude of the inputs, it is recommended to set the parameters o

and S8 so that § > «a/2.




Behavior of the controlled system

In this section, the behavior of the controlled system is investigated for the
case where the residual angular momentum, Ho = [hy, hs, h3]?, is not zero but
small. From Eqgs.(3) and (4), the basic equation of the system with the input
of Eq.(6) becomes

¢=—B(al — (Bes/g?) - YBYVV + (1/2) - QJ7 ' AC=YVH, . (10)

We investigate the behavior of the system described by Eq.(10) near the origin
(le1l, le2l, les] < 1, ep & 1). Near the origin, the second term in the right-
hand side of Eq.(10) can be approximated as (1/2)-QJ; *A® "V, = (1/2) -
Jt_lHo = [f1, f2, f3] , where fi1, f2 and f3 are the constants corresponding to
hi, ha and hz. Then, the basic equation (10) becomes approximately

d €1 a €1 — €3€2 e —€3 — €3€1 f1
7= 8 +es | — g—g —ezea+ep | 4+ | fo (1)
e 0 g ef +¢3 fs

From Eq.(11), the approximate solution of the variable e is obtained as eg =
Ce=Pt 4 f3/3, where C is a constant. On the other hand, by neglecting the
small terms and using the solution of ez, the derivative of the variable g can
be calculated as follows:

§g=—ag/i+B(Ce P + [3/8)*[(4g) + (e1 fr + e2f2)/(49) . (12)

First, we show that the variables e stay in the small region near the origin.
We introduce a small quantity fo such that |fi], [f2] < fo, a time T such that
|Cle=Pt < fo for ¥t > T, and define a small quantity Fy as Fy = 2fo/a +
V(2fa/a)2+ B(fo + | f31/8)%/a. From Eq.(12), the relation that ¢ < 0 holds
for Vt > T in the region where ¢ > Fy. Therefore, with the passage of time,
the variable g goes into the region where g < Fyy. Since g = \/e? + ¢3/2, the

system converges to the region where \/e? + €2 < 2F, and e3 = f3/53.

Next, we proceed to analyze the behavior of the system near the origin. When
the main body is in a controlled attitude, there are the following two types of
behavior according to the conditions of the residual angular momentum Hy.

Case A: (The case where |fs| < O(f# + f2).) When f3 = 0, + f3 # 0,
the point expressed by e. = [4fi/a, 4f>/a, 0]7 is an equilibrium point of
the system in Eq.(11). Tt can be shown that the equilibrium point is stable
by linearizing Eq.(11) near the point. When f3 is small but not zero, from
Eq.(11), an equilibrium point e, = [e1¢, €2, f3//7] satisfies approximately the
following equation:

o I3 3
[ €le ] _ -1 —1t a5 _4fgg [ bil ] (13)
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where g. = \/e?. +€3./2. Substituting Eq.(13) into g. = /e, + €3./2, we

obtain

o’gp = 2af3 /B2 + )i+ /07 + f5=0. (14)
There exist solutions of €1, and es. which satisfy Eq.(13) only if there exists a
solution of g. which satisfies Eq.(14) and g. > 0. From Eq.(14), the solution
of g exists if and only if a3 < 4(77 + 13)7/(1 — 4(f2 + [2)/(aB)) ~ A(S? +
J2)?. As a result, when this inequality is satisfied, the variable g. can be
calculated from Eq.(14) as g. = ge1, or ge2 (assume without loss of generality
that geca < ge1). The equilibrium point e, can be calculated from Eq.(13) using
the solution of ge1 or geo. By linearizing Eq.(11) near the equilibrium point,
it is revealed that the equilibrium point 1s a stable node when ¢g. = g.; and
a saddle point when g. = g.2. At the stable node, the main body is in an
attitude that diverges by a small amount from the desired attitude, and each
of the wheels rotates at a constant angular velocity.

Case B: (The case where f3 # 0.) When f3 # 0 and fi = f» = 0, the
approximate solution of the variable g can be solved analytically from Eq.(12),
and we can obtain that es — es. and g — g.¢ ast — oo, where ez, = f3/8,

gee = \/f2/(aB). When e3 = e3. and g = g, from Eq.(11), we obtain

2fs af 2f3 apf

msin(gt—l—d)) , €2 = mCOS(Et‘FW ; (15)

where 1 1s a constant. Therefore, the system converges to the limit cycle which
is expressed by Eq.(15) and e3 = f3/3. Next, it is shown that the limit cycle
can exist and be stable even if fZ 4+ f2 # 0. When e3 = e3., we express the
variables e; and es as

€1 =

_ (2 r sina—ﬁ €y = 2/3 r cosa—ﬁ
61—(m+ (t)) (4f3t+¢(t)), 2 (er (1)) (4f3t+¢(t)), (16)

and investigate the behavior of the variables r(t) and ¥(¢). If |#(t)] < |f3],
the derivatives of the variables r(¢) and ¢(t) can be approximated as follows:

() = fisin(g ot + 6(0) + focos(§Lt 4 0l0) = Sr) . (17)
00 = L2 freos(Eha+ vi0) — s S0+ vy} - S0 1)

From Eqs.(17) and (18), it can be shown that |r(¢)| < |f5] for V¢ > 0 and,
consequently, the limit cycle is stable. When the system is in the limit cycle,
each wheel rotates in one direction and the other periodically. The main body
does not rotate around the vector expressed as [0,0,1]7 in the frame {a(~"},
though the angular momentum hg exists.

Lastly, it should be noted that, from the above analysis, there may exist both
of the two types of behavior of the system, an equilibrium point and a limit
cycle, in the region where a?f2 < 4(f + f7)2. Moreover, it can be shown by
analysis that ger < ge2 < ge1 -



Numerical simulations

We executed numerical simulations based on the basic equation for control,
Eq.(10). The initial values of the system and the residual angular momentum
Hy are set as shown in Table. 1. The parameters of the spacecraft and the
controller are set as J; = diag{500,500,500} [kg - m?] , j1 = j» = 10 [kg -
m?] , @ =0.04, 8 =0.02. Also, numerical simulations based on the equation
of motion (2) were conducted in order to check the effect of the dynamic
characteristics of controller. In Eq.(2), we use the input torques defined as
[, )T = =K. P([01,02)F — [014,024]7), where 0;4(¢) = —(Jui/ji) - uwi(e) (i =
1,2) and wu(e) is given by Eq.(6). The feedback gain K; is chosen as K; =
10.0[1/s]. Each torque 7; is assumed to be saturated when its absolute value

reaches 1.0[N-m].
Table 1: Simulation cases

| || Initial Value of ¢” | Hlkg - m?/s] |

Case 1 (0.3,0.3,0.3) (0.1, 0.1, 0.0001)
Case 2 (0.3,0.3,0.3) (0.0,0.0,0.1)

Case 3 (0.3,0.3,0.3) (0.1, 0.1, 0.001)
Case 4 || (0.05,0.0,0.1) (0.1, 0.1, 0.001)

Case A: In Case 1, since o f3 < 4(f + f3)?, a stable equilibrium point exists
and the system converges to the point. Figure 2 shows the behavior of the
system based on the basic equation. At the equilibrium point, (e1,e2,e3) =
(0.0102,0.00974,2.49 x 107°) and g = 0.00707. From the theoretical analysis,
we obtain es. = 5.0 x 107 and g.; = 0.00706. On the other hand, the system
based on the equation of motion also converges to the same equilibrium point
as in Fig. 2.

Case B: In Case 2, since fs # 0 and fi = fo = 0, the system converges to
a limit cycle. Figure 3 shows the behavior of the system based on the basic
equation. On the limit cycle, e = 0.005, g = 0.0035. This result coincides
with the theoretical analysis very well. The theoretically calculated wheel
torques required during the limit cycle are about 28.3[N-m]. On the other
hand, the system based on the equation of motion converges to a limit cycle
where e3 = 0.005, g = 0.0105. Because of the saturation of the torques and
the time lag between the angular velocities of the wheels #; and the reference
velocities 6,4, the radius of the limit cycle becomes larger.

Lastly, we executed numerical simulations based on the basic equation for Case
3 and 4, where o?f3 < 4(f% + f%)?. Figures 4 and 5 show that the system
converges to an equilibrium point or a limit cycle according to the initial
values of the variables e. At the equilibrium point in Fig. 4, (e1,eq,e3) =
(0.0118,0.00683,2.49 x 10~%). On the limit cycle in Fig. 5, e3 = 5.0 x 1075 |
g = 3.5 x 1077, The numerical simulations based on the equation of motion
were also carried out. They show that the system converges to the equilibrium
point in both Case 3 and 4. It may suggest that the limit cycle 1s not possible
to realize because of the saturation and the time lag of controller.
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Conclusions

In this paper, we discussed the attitude control of a spacecraft with two reac-

tion wheels. A discontinuous state feedback controller which makes the atti-

tude converge to the desired one when the angular momentum of the spacecraft
is zero was designed. When the angular momentum is not zero but small, there
exist two types of behavior to the controlled attitude, an equilibrium point and
a limit cycle. This result was verified by analysis and numerical simulations.
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