多脚歩行ロボットの動力学解析

土屋和雄 青井伸也 辻田勝吉 (京都大学大学院 工学研究科 航空宇宙工学専攻)

Dynamics of a Multi Legged Locomotion Robot

Kazuo Tsuchiya, Shinya Aoi, Katsuyoshi Tsujita

(Dept. of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University)

Abstract: This paper proposes a turning strategy of a multi legged locomotion robot. Stability of locomotion of the multi legged locomotion robot along a straight line is analyzed, and then, based on the dynamic characteristics, a turning control method is designed. The effectiveness of the control method is verified by numerical simulations.

Keywords: Multi legged locomotion robot, Maneuverability, Turning control, Bifurcation, Oscillator.

1. はじめに

脚歩行ロボットは不整地歩行ができるなどの特徴を持つ。 その中で、多脚歩行ロボットは多数の脚で胴体を支える ことができるので、歩行の安定性に優れているという長 所を持つ。しかし同時に、多数の脚先が床面に拘束され ているため旋回歩行などの機能性に欠ける短所を持つ。 多脚歩行ロボットの実用化に対して、機能性の向上に関 する研究は重要である。現在、確立しているロボットの 運動制御の方法は、運動計画と運動制御から成る。運動 計画は与えられた運動を実現するロボットを構成する関 節の運動を計算することであり、運動制御は求められた 関節の運動を実現するための制御を行うことである。多 脚歩行ロボットの旋回歩行制御における運動計画は、あ る与えられた曲線に沿って多数の脚先の接地位置を求め ることであり、多変数の運動学方程式の逆問題を解くこ とに帰着する。この計算の計算コストは高く、また得ら れた解は環境変動に対する適応性を持たない。

動物行動学において、節足動物の歩行運動の研究が進 められている。節足動物はその歩行運動に対して高い安 定性を持っている。しかし同時に、素速い旋回運動を実 現するなど、高い機能性を実現している。現在、節足動 物がこの歩行における安定性と機能性をいかなるメカニ ズムによって実現しているのかということを明らかにす る研究が進められている¹⁾。最近 Holmes²⁾ らは、アメ リカゴキブリを対象として、その旋回歩行の動力学を数 理モデルに基づき解析した。その結果、アメリカゴキブ リは旋回時において、脚の胴体に対する力の作用点を実 効的に移動して、直線歩行運動を不安定化して、急速な 旋回歩行を実現しているという結論を導いた。

従来のロボティスクにおいては、ロボットの動特性を 変化させ、随意的に運動モードを切り換え、機能性を高 めることを目指した研究はほとんど行われていない。本 研究は、多脚歩行ロボットを対象として、直線歩行運動を 不安定化することによって旋回歩行を効率よく実現する 制御則を検討する。我々はすでに振動子系で構成した多 脚歩行ロボットの歩行制御系を提案している³⁾。この歩 行制御系で制御された多脚歩行ロボットは、直線歩行に おいて歩行速度に対応してその歩行パターンが変化する など、環境に適応した歩行を実現できる。本論文におけ

る解析はこの歩行制御系をもとに行う。まず、提案して いる歩行制御系を搭載した多脚歩行ロボットの直線歩行 の安定性を解析する。解析結果からある制御パラメータ を変化させることによって、直線歩行運動の安定度は低 下し、分岐点を越えて直線歩行運動は蛇行運動に遷移す ることが示される。この多脚歩行ロボットの動特性の変 化を利用した効率的な旋回歩行運動の制御則を検討する。

3次元動力学モデル

Fig.1 に示すような多脚歩行ロボットについて考える。ロ ボットはそれぞれ2本の脚を持つ6つのモジュールか ら構成される。それぞれの脚は2リンクから成り、1回 転自由度のジョイントで結合されている。それぞれのモ ジュールは結合器で結合されている。この結合器はロー ル、ピッチ、ヨージョイントで構成される。慣性空間に 固定された単位ベクトル系を $[a_0] = [a_{01}, a_{02}, a_{03}]$ と し、先頭のモジュール胴体に固定された単位ベクトル系 を $[a_1] = [a_{11}, a_{12}, a_{13}]$ とする。ただし、全て進行方向 に対してロール方向を1軸方向、ピッチ方向を2軸方向、 ヨー方向を3軸方向とする。Fig.1のように先頭からモ ジュールを番号付け、このロボットの背骨部分に当たる モジュール (i-1) とモジュール i の間は結合器 i とす る。そして、左脚と右脚をそれぞれ脚1、脚2とする。 各脚のジョイントとリンクも図のようにそれぞれ番号づ ける。 $[a_0]$ 系原点から $[a_1]$ 系原点までの距離ベクトルを $r_0 = [a_0]r_0$ と定義する。 $[a_{i-1}]$ 系から $[a_i]$ 系への 3-1-2Euler 角を θ_i とする。また、モジュール i 脚 j リンク kのジョイント角を $\theta_{ik}^{(j)}$ とする。 状態変数を次のように定義する。

$$q^{T} = [r_{0m} \ \theta_{im} \ \theta_{ikm}^{(j)}]$$
(1)
 $i = 1, \dots, 6, \ j = 1, 2,$
 $k = 1, 2, \ m = 1, 2, 3$

状態変数 q に対する運動方程式はラグランジュの運動 方程式から次のように得られる。

$$M\ddot{q} + H(q,\dot{q}) = G + \sum (\tau_i + \tau_{ik}^{(j)}) + \Lambda$$
(2)

Fig. 1: Schematic model of multi legged locomotion robot

ただし、M は慣性マトリクス、 $H(q, \dot{q})$ はコリオリカや 遠心力を含んだ非線形項、G は重力項、 τ_i は結合器 i で $\tau_{ik}^{(j)}$ はモジュール i 脚 j ジョイント k に加えられるアク チュエータのトルク、 Λ は脚先が床に接しているときに 加えられる床からの反力である。脚先と床との相互作用 は脚先接地点がバネ・ダンパーを介し、床に接触してい るとモデル化する。

3. 步行制御系³⁾

制御系は脚制御系と歩行パターン制御系から構成される (Fig.2)。脚制御系は、歩行パターン制御系から与えられ る軌道運動を実現するように、脚のジョイントアクチュ エータを動かす。歩行パターン制御系は各脚に配置され た非線形振動子から構成される。そして、基準となる歩 行パターンの指令値を基にして歩行パターンを構成し、 脚制御系へ指令シグナルを送る。

Fig. 2: Control system

脚先の基準軌道は次のように与えられる。脚先の位置 が遊脚相から支持脚相へ移る点を着地点 (AEP)、支持脚 相から遊脚相へ移る点を離脱点 (PEP) と定義する。基準

Fig. 3: Nominal trajectory of the leg

となる AEP,PEP を座標系 $[a_i]$ において $\hat{\eta}_{iP}^{(j)}, \hat{\eta}_{iA}^{(j)}$ と表 す。遊脚相の基準軌道は点 $\hat{\eta}_{iA}^{(j)}$ と点 $\hat{\eta}_{iP}^{(j)}$ を含んだ閉曲線 $\hat{\eta}_{iSw}^{(j)}$ で与えられ、支持脚相の基準軌道は点 $\hat{\eta}_{iA}^{(j)}$ と点 $\hat{\eta}_{iP}^{(j)}$ を含んだ直線 $\hat{\eta}_{iSp}^{(j)}$ で与えられる。

これらの軌道は振動子の位相の関数として与えられる。 すなわち、モジュールi 脚jに配置する振動子(i, j)を次 のように設定する。

$$z_i^{(j)} = \exp(\mathbf{j}\phi_i^{(j)}) \tag{3}$$

ここで、 $z_i^{(j)}, \phi_i^{(j)}$ は振動子の状態と位相を表す。

AEP と PEP での振動子 (i, j)の基準位相 $\hat{\phi}_i^{(j)}$ を次のように設定する。

$$\hat{\phi}_{i}^{(j)} = \hat{\phi}_{iA}^{(j)}$$
 at AEP, $\hat{\phi}_{i}^{(j)} = 0$ at PEP (4)

基準軌道 $\hat{\eta}_{iSw}^{(j)}$ と $\hat{\eta}_{iSp}^{(j)}$ は振動子の基準位相 $\hat{\phi}_i^{(j)}$ の関数 であり、それぞれ次のように与えられる。

$$\hat{\eta}_{iSw}^{(j)} = \hat{\eta}_{iSw}^{(j)}(\hat{\phi}_i^{(j)})$$
(5)

$$\hat{\eta}_{iSp}^{(j)} = \hat{\eta}_{iSp}^{(j)}(\hat{\phi}_i^{(j)})$$
 (6)

脚先の基準軌道 $\hat{\eta}_i^{(j)}$ はこれら 2 つの軌道を切り替える ことで次のように与えられる (Fig.3)。

$$\hat{\eta}_{i}^{(j)}(\hat{\phi}_{i}^{(j)}) = \begin{cases} \hat{\eta}_{iSw}^{(j)}(\hat{\phi}_{i}^{(j)}) & 0 \le \hat{\phi}_{i}^{(j)} < \hat{\phi}_{iA}^{(j)} \\ \hat{\eta}_{iSp}^{(j)}(\hat{\phi}_{i}^{(j)}) & \hat{\phi}_{iA}^{(j)} \le \hat{\phi}_{i}^{(j)} < 2\pi \end{cases}$$
(7)

各脚の振動子の周期と支持脚相の一周期あたりの基準時 間との比率を次の基準デューティー比 $\hat{\beta}_i^{(j)}$ で表す。

$$\hat{\beta}_{i}^{(j)} = 1 - \frac{\hat{\phi}_{iA}^{(j)}}{2\pi} \tag{8}$$

このとき、各脚の基準歩幅 $\hat{S}_i^{(j)}$ と基準歩行速度 \hat{v} は次で与えられる。ここで \hat{T}_{Sw} は遊脚相の基準周期である。

$$\hat{S}_{i}^{(j)} = \hat{\eta}_{iA1}^{(j)} - \hat{\eta}_{iP1}^{(j)}, \ \hat{v} = \frac{1 - \hat{\beta}_{i}^{(j)}}{\hat{\beta}_{i}^{(j)}} \frac{\hat{S}_{i}^{(j)}}{\hat{T}_{Sw}} \tag{9}$$

次に歩行パターン、すなわち振動子の位相差は次のように与えられる。まず、振動子の基準位相ダイナミクス を次のように設定する。

$$\dot{\hat{\phi}}_i^{(j)} = \hat{\omega} \tag{10}$$

モジュール i 脚 j ジョイント k の基準相対角度 $\hat{\theta}_{ik}^{(j)}$ は、 基準位相 $\hat{\phi}_{i}^{(j)}$ の関数として次のように表される。

$$\hat{\theta}_{ik}^{(j)} = \hat{\theta}_{ik}^{(j)}(\hat{\phi}_i^{(j)}) \tag{11}$$

基準相対角度 $\hat{ heta}_{ik}^{(j)}$ を指令値として、ジョイントに対し て次のような制御を行う。

$$\tau_{ik}^{(j)} = K_{Pik}^{(j)}(\hat{\theta}_{ik}^{(j)} - \theta_{ik}^{(j)}) + K_{Dik}^{(j)}(\dot{\hat{\theta}}_{ik}^{(j)} - \dot{\theta}_{ik}^{(j)})$$
(12)

ここで、 $au_{ik}^{(j)}$ はモジュール i 脚 j ジョイント k に与えら れるアクチュエータトルクであり、 $K_{Pik}^{(j)}, K_{Dik}^{(j)}$ はフィー ドバックゲインである。

ー方、このロボットの背骨部分に当たる結合器 *i* に対 しては次のような制御を行う。

$$\tau_i = -K_{Pi}\theta_i - K_{Di}\dot{\theta}_i \tag{13}$$

ここで、 τ_i は結合器 *i*に与えられるアクチュエータトル クであり、 K_{Pi}, K_{Di} はフィードバックゲインである。

4. 直線歩行運動の安定性解析

ここでは、上で述べた歩行制御系で制御された多脚歩行 ロボットの直線歩行の安定性解析を行う。

4.1 2次元動力学モデル

歩行パターンにおいて全脚同相といった特殊な歩行パター ンをとらない限り、常に床に着いている脚の数が多いた め床面に対して垂直方向の運動に関しては無視できる。 すなわち、各モジュールの上下運動、ピッチ運動を省略 する。次に、体軸運動の周期は脚の歩行周期に対して十 分長いものと仮定する。そのため、脚の接地時に床から 加えられる力は実際は断続的で衝撃的なものであるが、 十分にゆっくりとした体軸運動と考える限りは平均的な 力として一様力に置き換える。

これらの仮定から、Fig.1 で示す3次元モデルはFig.4 で示す2次元モデルに簡単化できる。このモデルは1軸回 転ジョイントで結合された剛体系で構成され、平面上の みを運動できる。推進力としては、各剛体モジュールの進 行方向に対して常に接線方向に一様力、従動力 (follower force) がかかっている。またこの各モジュールの推進力 が働く点に、モジュールに対して接線垂直方向に対して は摩擦力としてその方向の速度に比例する力がかかるも のとする。また、このロボットは進行方向に対して一定 の速度で動いているものとする。

以上の仮定の下で運動方程式(2)は次のように簡単化 される。

$$\begin{bmatrix} M(q) & 0\\ 0 & I \end{bmatrix} \begin{bmatrix} \ddot{q}\\ \dot{q} \end{bmatrix} = \begin{bmatrix} f(q, \dot{q})\\ \dot{q} \end{bmatrix}$$
(14)
$$q^{T} = \begin{bmatrix} r_{02}, \theta_{i3} \end{bmatrix} (i = 1, \cdots, 6)$$

また、進行方向変位
$$r_{01}$$
は分離されるので消去した。 ξ^T $[\dot{q}^T, q^T]$ とおくと、次のように書ける。

$$A(\xi)\dot{\xi} = b(\xi)$$
(15)
$$A(\xi) = \begin{bmatrix} M(\xi) & 0 \\ 0 & \xi \end{bmatrix}, \ b(\xi) = \begin{bmatrix} f(\xi) \\ 0 & \xi \end{bmatrix}, \ B = \begin{bmatrix} I & 0 \end{bmatrix}$$

$$A(\xi) = \begin{bmatrix} M(\xi) & 0\\ 0 & I \end{bmatrix}, \ b(\xi) = \begin{bmatrix} f(\xi)\\ B\xi \end{bmatrix}, \ B = \begin{bmatrix} I & 0 \end{bmatrix}$$

Fig. 4: Simplified model of multi legged locomotion robot

4.2 線形化方程式とその安定性解析

(15) の平衡解を ξ_0 とする。 $\xi = \xi_0 + \delta \xi$ として ξ_0 のまわ りで展開すると次のように書ける。

$$\left\{ A(\xi_0) + \frac{\partial A(\xi)}{\partial \xi} \bigg|_{\xi_0} \delta \xi \right\} \dot{\delta\xi} = b(\xi_0) + \frac{\partial b(\xi)}{\partial \xi} \bigg|_{\xi_0} \delta \xi \quad (16)$$

 $\delta \xi$ の1次の項まで考慮すると、次のように書ける。

$$A(\xi_0)\dot{\delta\xi} = \frac{\partial b(\xi)}{\partial \xi} \bigg|_{\xi_0} \delta\xi \tag{17}$$

 $A(\xi_0)$ は正則なので、次のように書ける。

$$\dot{\delta\xi} = W(\xi_0)\delta\xi, \quad W(\xi_0) = A(\xi_0)^{-1} \frac{\partial b(\xi)}{\partial\xi}\Big|_{\xi_0}$$
 (18)

直線歩行運動の安定性を調べるので、平衡解として $\xi_0 =$ $[\dot{y}, \theta_i, y, \theta_i] = [0, \dots, 0]$ (*i* = 1, …, 6) を選ぶ。パラメー タは Table 1 のように設定する。

Table 1: Linear analysis parameters

モジュールの質量	0.80	[kg]
従動力 (F)	3.32	[N]
步行速度 (\dot{x})	0.167	[m/s]

まず、結合器のヨージョイントのフィードバックゲイ ンをパラメータ f を用いて徐々に小さくしていくことに より、コンプライアンスを増加させる。ただし、(= 0.8 とする。

$$\begin{cases} K_{Pi} = K_0 (2\pi f)^2 \\ K_{Di} = 2K_0 \zeta (2\pi f) \end{cases} \quad (i = 2, \cdots, 6) \tag{19}$$

その時の線形化方程式(18)に対する固有値軌跡を調べ る。結果を Fig.5 に示す。この図から、ある臨界点を越 えてパラメータ f が小さくなると、虚軸を交差して不安 定領域に固有値が入り込み、ホップ分岐を起こすモード が存在することがわかる。ただし、丸で囲んである点が 不安定化する固有値が存在するときのそれぞれの固有値 に対応する。この解析結果から、結合器のヨージョイン トのゲインが強い場合においては直線歩行運動は安定に 持続するが、ある臨界点を越えてゲインが弱くなると直 線歩行運動が不安定化することがわかる。

4.3 数値シミュレーションによる検証

数値シミュレーションにより、2次元モデルで行った線 形解析の妥当性の検証を行う。

数値シミュレーションパラメータを Table 2 のように 設定し、基準歩行パターンは隣接する前後左右の脚の振 動子の位相がそれぞれ逆相になるように設定する。

Table 2: Simulation parameters

胴体の質量	0.60	[kg]
リンク 1,2 の長さ	0.07	[m]
リンク 1,2 の質量	0.050	[kg]
基準遊脚相周期 (\hat{T}_{Sw})	0.2	[s]
基準歩幅 $(\hat{S}_i^{(j)})$	0.05	[m]

まず、ロボットの結合器のヨージョイントのフィード バックゲインを式 (19) と同様にしてパラメータ f を用い て変化させ、直線歩行運動において系がどのように変化 するかを調べる。ただし、基準デューティー比 $\hat{eta}_i^{(j)}=0.6$ とする。Fig.6 にその時の結果を示す。これは横軸をパラ メータ $1/f^2$ にとり、結合器 4 のヨージョイント相対角 θ43 の歩行周期ごとのポアンカレ断面をプロットしたも のである。この図から、ある臨界点で分岐が起こり、振 動的な動きをしている様子がわかる。ポアンカレ断面の データにより上下に塗りつぶされているのは、歩行周期 と体軸の蛇行周期の比率が必ずしも有理数の関係になっ ていないためである。また、これらの現象は歩行パター ンにほとんどよらず、各モジュールの左右の脚の振動子 が同相で、隣接する前後の脚の振動子が逆相のような歩 行パターンでも見受けられる。更に結果から、体軸運動 の周期は脚の歩行周期の約14倍程度となり、脚の歩行周 期に比べて十分長いことも確認できた。

次に、数値シミュレーションで得られた体軸運動と線 形解析により得られる不安定モードの固有ベクトルをそ れぞれ比較する。Fig.7 と Fig.8 はそれぞれ、数値シミュ レーションにおいては各自由度の状態、線形解析におい ては不安定化した固有ベクトルのパラメータ $1/f^2$ に対 する振幅比と、 θ_6 に対する位相差をプロットしたもので

Fig. 6: Poincaré section of θ_{43}

Fig. 7: Amplitude of joint angle

ある。これらのデータを特に臨界点付近 (矢印) において 比較するとほぼ同じような挙動を示していることがわか る。ただし、y に関しては常に零固有値を持つため、数 値シミュレーションにおいてあまり安定したデータが得 られなかった部分は除いてある。

5. 旋回步行制御

5.1 旋回步行制御系

上述の解析結果に基づき、次の旋回歩行の制御則を提案 する。

- ・旋回歩行開始時に結合器2以外の全ての結合器のヨージョイントのコンプライアンスを増加させる。つまり、式(19)と同様にして結合器のヨージョイントのゲインを低下させる。
- 結合器2のヨージョイントの制御トルクに角度指令 値を与える。角度指令値は先頭モジュールが進行方 向を向くように与える。

この制御則は結合器2をアクティブに動かすことで先頭 モジュールを進行方向に向け、後のモジュールに関して は体節間が受動的に結合されているため先頭に追従させ ることで旋回歩行を実現させようというものである。こ の時、直線歩行運動の安定度が低下しているので、後の モジュールは強い拘束力を受けることなく旋回できる。

5.2 シミュレーション結果

提案する制御則の有効性を数値シミュレーションによっ て検証する。タスクとしては、目標地点への追従問題に ついて考える。その際に、目標地点の位置 (x_d, y_d) と現 在の位置(x, y)との相対関係、そして現在の進行方向に 対して向くべき方向の情報は与えられるものとする。先 頭の慣性空間に対する目標地点の方角 ψ は次のように与 えられる。

$$\psi = \frac{\pi}{2} - \phi, \quad \tan \phi = \frac{x_d - x}{y_d - y} \tag{20}$$

そして、結合器2のヨージョイントに対して次のような トルクを与える。

$$\tau_{23} = -K_{P23} \{ \theta_{23} - (\theta_{13} - \psi) \} - K_{D23} \dot{\theta}_{23}$$
(21)

結合器 2 に関してはヨージョイントのコンプライアン スを一定として、その他の結合器のヨージョイントに関 してはコンプライアンスを増加する。x 方向に進行して いる際に先頭の位置が (x, y) = (0, 0) に来たときに、目 標位置 $(x_d, y_d) = (0, 50)[m]$ と設定して、ほぼ 90 度の旋 回歩行を実現させるシミュレーションを行う。

Fig.9 はこのタスクを実行させたときのトルクゲイン の3段階の強さに対して旋回歩行をはじめてからの先頭 の進行方向の変化をプロットしたものである。Fig.10 は パラメータ f に対する各脚の床面に対する滑り量の平均 値をプロットしたものである。

これらの結果から、コンプライアンスがかなり小さい 領域、つまりトルクゲインの強い領域においては旋回歩

Fig. 8: Phase differences of joints with the joint of module 6

行の追従性が悪く、滑り量を見てもかなり滑ったり、引 きずられている様子がわかる。それに対して、コンプラ イアンスが大きい領域、つまりトルクゲインの弱い領域 においては旋回歩行の追従性は良いが、前の直線歩行で の動特性でも調べたように直線歩行状態において体軸運 動が励起してくるため、その影響で滑りが生じたり、歩 行効率が悪くなる。

結果として、コンプライアンスを制御することにより 直線歩行運動の安定性を落とし機能性を上げることで、 なるべく床面に対して脚先が滑らない旋回歩行が実現で きた。また、旋回歩行を含めたこの歩行ロボットの歩行 性能に関しては、パラメータ f に関して妥当な領域が存 在し、適切に設定することで効率よく歩行が実現できる。 体節間のゲインは弱い方が機能性は良いが、あまり弱く しすぎると体軸運動が励起して歩行性能が悪くなる。不 安定化する臨界点直前付近が最も効率良く歩行が実現で きる。

References

[1] Jindrich D, Full RJ, Many-legged maneuverability: dynamics of turning in hexapods, J Exp Biol 202,

Fig. 9: Walking direction of module 1 to inertial space

Fig. 10: Average of slippages of each legs

pp. 1603-1623, 1999.

- [2] Schmitt J, Holmes P, Mechanical models for insect locomotion: dynamics and stability in the horizontal plane - application, Biol Cybern 83, pp. 517-527, 2000.
- [3] Kazuo Tsuchiya, Katsuyoshi Tsujita, Manabu Kawakami, Shinya Aoi, An emergent control of gait patterns of legged locomotion robots, IAV2001, pp. 271-276, 2001.