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Synthesis of Hybrid Systems with Limit Cycles Satisfying
Piecewise Smooth Constraint Equations

Masakazu ADACHI®), Toshimitsu USHIO™), Members,

SUMMARY In this paper, we propose a synthesis method of
hybrid systems with specified limit cycles. Several methods which
sysnthesize a nonlinear system with prescribed limit cycles have
been proposed. In these methods, the limit cycle is given by an
algebraic equation, which will be called constraint equations, and
its stability is guaranteed by a Lyapunov function derived from
the constraint equation. In general, limit cycles of hybrid systems
are nonsmooth due to the discontinuous vector fields. So the
limit cycles are given by piecewise smooth constraint equations,
we employ the piecewise smooth Lyapunov functions to construct
desired nonsmooth limit cycles and guarantee their stability.
key words: limit cycles, hybrid systems

1. Introduction

Limit cycles are one of the most important phenomena
in nonlinear dynamical systems, and applied in many
engineering fields. While stability analysis of limit cy-
cles is a fundamental problem and many theories such
as Lyapunov function methods have been proposed,
the inverse problem of synthesizing a nonlinear system
which has a stable and prescribed limit cycle is also im-
portant. Several methods for the inverse problem have
been proposed [1]-]4].

On the other hand, dynamical systems whose states
consist of both continuous and discrete variables are
called hybrid dynamical systems [5]. Behaviors of their
discrete states are piecewise-constant, and their contin-
uous states evolve according to differential equations
corresponding to the current discrete states. Behaviors
of the continuous states are inherently nonsmooth be-
cause of change of the discrete states. Many physical
and mechanical systems can be naturally described by
hybrid systems. In hybrid systems, stability analysis is
very difficult since continuous Lyapunov functions are
no more useful. Recently, many approaches to stability
analysis based on discontinuous Lyapunov functions or
multiple ones have been developed [6]-[8].

Since several hybrid systems do not have a constant
steady state but a periodic one, studies of limit cycles
in hybrid systems are more important. For example,
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the existence and stability of limit cycles in a switched
server system [9], [10], and global asymptotical stability
of limit cycles in relay feedback systems using extended
Poincaré maps [11] have been reported. In more gen-
eral cases, discrete-time model is derived by focusing on
points where solutions hit switching surfaces, and it is
possible to check the exponential convergence of limit
cycle by using discrete-time Lyapunov functions [12].
However, there are little studies on how to construct a
hybrid system which has a stable nonsmooth limit cy-
cle. From an engineering viewpoint, such a limit cycle
is applicable: for example, it can approximates walking
patterns of humanoid robots [13], [14].

This paper proposes a synthesis method of hybrid
systems with nonsmooth limit cycles. In the proposed
method, a given limit cycle is split into some ellipsoidal
curves, we calculate a piecewise smooth constraint func-
tion V(z) derived from piecewise quadratic Lyapunov
functions such that V(z) is constant on each curve,
and we obtain a desired hybrid system. The proposed
method is an extension of Green’s method [4].

This paper is organized as follows. In Section 2,
we revisit and reformulate some useful techniques re-
ported in [4] and show illustrative examples. In Sec-
tion 3, hybrid systems derived from a piecewise smooth
constraint equation are presented and we discuss their
properties. An example illustrates the results.

2. Systems with Prescribed Limit Cycles

In this section, we present several concepts that will
be used throughout this paper. First, we consider the
following continuous differential equations:

&= f(z) +g(2), (1)
iR >R g:R" > R"

Green [4] shows sufficient conditions such that solutions
z(t) of (1) satisfy a given constraint V(z) = 0 ast — oo.

Theorem 1 ([4]): If there exists a continuously differ-
entiable function V : Q@ — R™ where 2 is a subset of
R™, (n > m) such that

. OV (z)
O =5,

f(z) =0, VzeQ.



(ii) For each uth component of V1 < p < m,
oV, (x
Pal®) o0y, @) <0,

ox
Vz € Q such that V,(z(t)) # 0,

then any solution z(t) € Q of (1) except equilibrium
solutions satisfies 1tlim V(z(t)) = 0. O
—00

From Theorem 1, if V=!(0) forms a closed curve and
contains no equilibrium points, a solution of (1) start-
ing from any initial point converges to the hypersurface
V(xz) = 0, and after the convergence the solution forms
a closed curve on this hypersurface. As a special case,
we consider that m = 1, and a system is described by
the following form:

&= Az +a+V(z)(Bx +b), (2)

where z € R", A,B € R™*" a,be R™,and V : R™ —
R. In order to simplify the description of this system,
we augment the state vector and rewrite (2) as

i = A% + V(z)B#, (3)

- x| = A a ~ B b
wherex—{l], —[0 0},andB—[0 0].Acon—
straint function V' (z) is given by a Lyapunov function

V(z) = 2" Pz +2p"x + 7 = iT PZ, (4)

where P € R™*"™ is a positive definite symmetric ma-
trix, p € R", 7 € R, and P = [If; ﬂ . Then, the
following corollary is easily shown.
Corollary 1: If P satisfies

() 7P+ Pi—o,

(ii) BTP+ PB <0,
then any solution z(t) of (3) except equilibrium solu-
tions satisfies tli)m V(z(t)) = 0. |

For a given P, we can construct a system with an
asymptotically stable limit cycle satisfying TPz =0
by choosing appropriate matrices A and B. It is noted
that the matrix A is simply given by

A=G.p, Ga= %0 (5)

where G4 is an nonzero skew-symmetric matrix. The
matrix B can be also chosen by

B—GpP. Cp= {GB 0] , (6)

0 0

where Gp is a matrix which satisfies G5 + Gp < 0.

Example 1 (n = 2): We consider the following sym-
metric matrix P:
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. 751 =27
P= 1 25 0 (7)
-27 0 =5
Moreover, we set
B 0 -1 0
Ga=|1 0 o[, (8)
0 0 0
. —0.0462  0.002 0
Gp=| —00092 —0.0314 0 |. 9)
0 0 0
Then, by (5) and (6) we have
~ -1 =25 0
A=|75 1 -—27 |, (10)
0 0 0
. —0.3445 —0.0412 0.1247
B=| —0.1004 —0.0877 0.0248 | . (11)
0 0 0

Example 2 (n = 3): Set IB,C;'A, and G g as follows:
2 0.8 1.4 —1.7
= | 08 1 03 2
P= 1.4 0.3 3 —0.5 ’ (12)
—1.7 2 —0.5 -3

0 1 05 0
~ -1 0 1 0

Ga=1| 95 -1 0 o> (13)
0 0 0 0
—0.0185 —0.0005 0.001 0
=~ | 0.0015 —0.0315 —0.001 0
Ge=1| 5002 —0003 —0.0005 0 (14)
0 0 0 0
Then, we have
1.5 1.15 1.8 1.75
= | —06 —05 1.6 1.2
A= 18 —14 21 —115 | (15)

0 0 0 0

—0.036 —0.015 -—0.0231 0.03
B= —0.0236 —0.0306 —0.0104 —0.065 16
B [—0.0071 —0.0047 —0.0052 —0.0024J . (16)

0 0 0 0

Figures 1 and 2 show simulation results of Examples 1
and 2 from two initial states, respectively. Dashed lines
in Figure 1 denote level curves of the Lyapunov func-
tion. Both solutions in this figure converge to the limit
cycle which satisfies V' (z) = 0. In contrast, in Figure 2,
each solution converges to different limit cycles on an
elliptic sphere which satisfy V' (z) = 0.

It is clear from these results that this approach can-
not synthesize a unique limit cycle when n > 2, because
the constraint V(z) = 0 defines an (n — 1)-dimensional
manifold and solutions converge to different limit cycles
on the manifold depending on the initial state. In or-
der to synthesize a unique limit cycle in the case where
n > 2, (3) is modified as the following system with a
constraint function V : R™ — R"1:



ADACHI et al.: SYNTHESIS OF HYBRID SYSTEMS WITH LIMIT CYCLES SATISFYING PIECEWISE SMOOTH CONSTRAINT EQUATIONS

Xl

Fig.1 Solutions of Example 1 from two initial conditions
x(0) = £[1.5 1.5]T.

Fig.2 Solutions of Example 2 from two initial conditions
2(0) = £[5 5 5]T.

A 0 a Vi[B 0 bz
Z 0 & a1 Va
= Do E+ : , (17)
Zn—o 0 &hoo O 2Vn 1
00 0 0 0

where & = [z 22z, 1]T, A,B € R?>*% a,b € R**!,
= € RIXQ, L,ap € Ryi =1,...,n—2, and V =

Vi Vo - Vo]t : R® = R, Vi(z) is given by
T
(21 25 1] {Z; p] zo |, ifi=1,
Vi(z) = poTh (18)
Gir1 +miTe + \; — w11, otherwise.

Vi(z) defines an elliptic cylinder and the other func-
tions Vi(z), i = 2,...,n — 1 define hyperplanes in
the n-dimensional space. Figure 3 shows a configura-
tion for Vi (z) and Va(x). To construct a system (17)
with an asymptotically stable limit cycle which satis-
fies V(z) = 0 (this defines a 1-dimensional manifold),
we consider the condition %Ef) f(z) = 0. The matrix
A and the vector a can be determined by (5). For the
other parameters =;,&;,7 = 1,...,n — 2 must satisfy

C%
- Vo(z)=0

Fig.3 The constraint V(z) = 0 in 3-dimensional space.
oVi(z) A a
= |(; g —1| | = =0, 1
5 @ =G m 1] Li_l &_1] 0 (19)

which implies

[Eic1 &G-1] =[G m][A q]. (20)

Thus, using (5) and (20), we can construct the first

term of (17) which has a desired limit cycle specified

by the intersection of V;. Next, we consider the second
oVi(x)

condition =5-*g(z)Vi(z) < 0. Here, we introduce the

following proposition [4, Corollary 2.1].

Proposition 1: Assume that V; satisfies all condi-
tions of Theorem 1. If all solutions of (1) are bounded,
the second condition in Theorem 1 with respect to V,,,
2 < u<mn-—1,is equivalent to the following condition:

(ii)’ For each uth component of V.2 < p<n—1,
oV, (x)
AR
Vz € Q such that Vi(z) =0. O

By choosing the matrix B and the vector b from (6), it
is guaranteed that all solutions converge to V;(z) = 0
as t — oo. For any z satisfying V;(z) =0,

OVi(x)
ox

Vi[B 0 bz
a;1V;

= —Oéi—1Vi(95)2 <0. (21)

Vi(z)

Hence, whenever B and b are determined, (17) satis-
fies the convergence condition 8‘2—959”) g(x)Vi(z) < 0 from
Proposition 1, and solutions converge to the limit cycle
satisfying V(z) = 0. It is noted that a;—1 > 0 repre-
sents a convergence rate of V;.

Example 3: We consider the case when V : R® —
R2. Let Vi(x) be (7) and

VQ (ZIZ) = 1.5:171 — 0.2:172 — I3. (22)

We select matrices A, B and vectors a,b as (10) and
(11). Using (20), we have

= &]=[-3 -395 0.54]. (23)

Figure 4 shows a simulation result of this example with
a1 = 2. Every solution converges to the same limit
cycle.
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Fig.4 Solutions of Example 3 from two initial conditions

z(0) = £[1.5 1.5 5]T.

3. Synthesis Method

We consider hybrid systems described by

#(t) = h(x(t), a(1),
{ g+ (1) = dla(t), a(h)), (24)

where £ € R™ is the continuous state vector, q €
= {1,2,---, M} is the discrete state, q*(t) refers
to the lefthand limit of ¢(t) at time ¢, that is ¢+ (t) =
lim. 40 q(t +¢). The function ¢ : R" x @ — @ de-
scribes the change of discrete states, and a switching of
discrete states from ¢ to r is defined by a switch set

Sq,’" = {l‘ € R™ | (b(l',q) = T'}, q,r € Q (25)

The function h : R™xQ — R™ shows a vector field, and
the continuous state z(-) evolves according to h(-,q) for
each state ¢ € Q. In this paper, each h(-,q) is called a
subsystem q.

Definition 1: A solution (z(t), q(t)) of (24) is said to
be well-defined if the following conditions hold:

(i) The solution is defined for ¢ € [0, o).

(ii) There exists a finite or infinite sequence {t,}_,
such that tg = 0, thy1 > tn, n = 0,1,2,...,
lim, N ¢, = 0o. ¢(t) is discontinuous only at ¢,
and constant for ¢, <t <t,y1.

{t.}N_, is called a switching sequence of the solution
(2(t), q(t)).

The hybrid space of (24) is given by H := R™ x Q.
Consider an initial state which lies in a set of pos-
sible initial conditions (zg,q0) € Ho C H, and as-
sume that a solution (z(t),q(t)) starting from (zo,qo)
is well-defined. The solution of (24) evolves according
to & = h(x,qo), and if a state z(t) hits a switch set Sy,
at time t,, the corresponding discrete transition from
the discrete state ¢ to r occurs. The evolution of the
discrete state can be described by a sequence

£(z0,90) = (90, t0), (q1,t1), - - -, (26)
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where (qi,tx) means that ¢ = h(z(t),qx) for tp <t <

terr and ¢ (teg1) = G(x(tes1), qk) = qrrr. For (26),
we define a projection to a time sequence:

ft(mO,qO) :to,tl,t2.... (27)

To express a sequence of the time interval where dis-
crete state equals ¢, we define the following projection:

ft(m07q0)|q:tgatga---atgkatgk+17"' (28)

where tJ, and tJ, ., are time instances where the sub-
system ¢ is switched on and off, respectively. Further-
more, to obtain the duration which the system is driven
by the subsystem ¢, we define the interval completion
I(&:(zo,q0)|q) as a set obtained by taking the union of
all intervals

I(& (0, 90)lq) = U (360 t3k11)- (29)

keEN

Let E(&:(xo,q0)|q) be the even sequence of & (xo, qo)|q:

E(&(xo,q0)|q) = t8,t3,...,t2,, ... (30)

The conditions of Theorem 1 are based on a smooth
constraint equation. Using a piecewise smooth con-
straint equation, we will extend Theorem 1 to hybrid
systems given by

{ &(t) = fz(t),q(t)) +
gt (t) = op(x(t),q(t)).

Theorem 2: If there exists a continuously differen-
tiable function V, : Q, — R™, for all ¢ € ) where Q,
is a subset of R™, (n > m) such that

@) 2D a9 =0, v e Q¥ € 16z a0)la),
(ii) For each uth componet of V,,1 < p < m,
2%
Pl 0. gy, (@) < 0
Vo € Q, s.t. Vg, (x) ;é 0, Vt € I(&(xo,q0)|q),
(iti) V,(z) = Vr(a:), z € Sy, vt € B(& (0, q0)IT),
q(t

then any solution (x(t),q(t)) € Qg of (31) ex-
cept equilibrium solutions of each subsystem satisfies

Jim V) (2(t)) = 0. 0

CORTO)—

Proof: Due to the first and second condition, it
guarantees that ||V,(z(t))|| decreases for all ¢ €
I(&(x0,q0)|g) from Theorem 1. From the third con-
dition, for any discrete transition from ¢ to ¢’ at t €
E(&(x0,90)|q"), we have V,(z(t)) = Vg (z(t)). Con-
sequently, we conclude ||V, (z(t))|| decreases for all
t € Ugel(&(70,q0)|q) and all solutions (z(t), q(t)) of
(31) satisfy V) (2(t)) =0 as t — oc. |

It is noted that the convergence of ||V, (z(t))]| is
assured even if there exist ¢ whose interval comple-
tion I(&:(zo,q0)|¢) ends up with finite time, because
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the third condition of Theorem 2 requires the continu-
ity of V,)(2(t)) with respect to all possible discrete
transitions, that is, all possible switching sequences.

We consider the following hybrid system with V,,
given by (18).

( A, 0 aq, Vi [Bq 0 bq] z
En 0 &g Qg Vg,
T = : : T+ ,
Eqn—2 0 £Qn—2 a‘In—QVQn—l
[0 O] 0 O 0
[ ¢"(t) =r, if q(t)=q and z(t) € Sy,

(32)

where the transition of discrete state from ¢ to r occurs
whenever solutions hit a hyperplane

Ser ={zeR"|e),i=0}, ¢reqQ, (33)

o dq,r]T, Cqr € R", and d,;, € R.
For given V,, this hybrid system satisfies both the first
and second condition in Theorem 2 by determining each
parameter A,, a4, By, by, 2, and &, from (5), (6), (20).
But V, is not allowed to choice freely because of the
third condition. This condition requires the continuity
of constraint functions on all switching surfaces, and
it is hard to find such constraint functions in general.
From Proposition 1, however, if V,, satisfies the con-
tinuity on all switching surfaces, the second and third
condition of Theorem 2 is relaxed.

Since V,, is quadratic, this type of quadratic func-
tions can be formulated by piecewise quadratic Lya-
punov functions using the conditions for discrete transi-
tions [7]. Let the quadratic function be V,, (z) = #T P,#
and consider the case that the discrete state switches
from ¢ to r. The condition of switching is given by
5;@ = 0. Since V,, should be continuous on switch-
ing surfaces, the third condition in Theorem 2 can be
formulated by

5 _ [T
where ¢, = [c

p’f‘ = pq + fgjréq,’f‘ + 53:7'{(1,7‘7 (34)

where #, . is an (n + 1)-dimensional vector.

In a piecewise affine system which is a special class
of hybrid systems, the state space is partitioned into
several regions X, C R"™,q € (), and each region cor-
responds to a discrete state. If each region forms a
polyhedron with pairwise disjoint interior, we can ob-
tain matrices E, = [E, eql, E, = [F, f,] such that

z € X, (35)
z€X,NX,. (36)

In this paper, these polyhedrons are given by

Eq = [th qu 0 0 eq] ’ (37)

where E,; is the ith column vector of E,, since we con-
sider a two-dimensional quadratic function as V,, inde-
pendently of the dimension of the system. By using this
representation, the requirement that V,, is continuous
at every point on the switching surface can be written
as

P, = F,TF,, (38)

where T' is a symmetric matrix. Then the continuity of
Vg, is assured by using (34) or (38), from Proposition
1 and we have the following proposition.

Proposition 2: Assume that V,, satisfies all condi-
tions of Theorem 2 for each ¢ € @,. If all solutions of
(32) are well-defined, the second and third conditions
of Theorem 2 with respect to V,,, 2 < u <n -1, are
equivalent to the following conditions:
(ii)’ For each pth componet of V,,2 < p <mn—1,

MV, ()

TQ(.’L’, q)VqM (l’) < 0,

Ve € Qq s.t. Vq1 (ZIZ) = 0, Vt € I(&(wo,qo)|q).
(iii)* For each pth componet of V,;,2 < p <n —1,
Vo (@) =V, (2), €Sy st Vo, (2) = Vi) (),
Vt € E(&(x0,q0)|r). O
Example 4: We consider the following piecewise
smooth constraint equation V,(z) = 0, ¢ € {1,2,3,4}
as follows:

2 2
Vl(w):[6m1+2m2—8}’ [1 -1 0]3:20,

"

T2 — T3 1 1 0
v = [0S (4 T (e
va(w)z[“’”%_jffi;ﬂ, B EEY)
w(m)z[z””%_;ﬁfiﬂ, 1 gle>o,

Then, V,,, ¢ € {1,2, 3,4}, are continuous on all switch-
ing surfaces, and V,, are also continuous under the con-
dition V,, = V,,. Thus we can construct the following
hybrid system from (32):

(2] [ 22y — (69:% + 222 — 8)x1 | 1 -1 0

To| = |—6x; — (62} + 223 — 8)z2| , [1 1 0] x >0,
| T3 | | —6x1 + (z2 —x3)

EZN [ 6z9 — (221 4+ 623 — 8)z1 ] 1 -1 0

Za| = | 221 — (223 4 623 — 8)x2 | , [_1 1 0] x>0,
_1:3_ L 6x2 + (z1 — x3)

(2] [ 22y — (69:% + 222 — 8)x1 | 11 0

Zo| = | =6z, — (62} + 223 — 8)z2 | , [_1 -1 0] x>0,
| T3 | | 6x1 4+ (—x2 —x3)

EZN [ 6z9 — (227 4+ 623 — 8)z1 ] 11 0

Za| = | 221 — (223 4 623 — 8)x2 | , [ 11 0] x>0,
EZY | —6x2+ (—z1 — x3)

Every solution except equilibrium solutions converges
to the desired limit cycle as shown in Figure 5.



Fig. 5

Solution of Example 4 from initial condition z(0) =

[00.5 5]T.

4.

Conclusions

In this paper, we propose a synthesis method of hybrid
systems with limit cycles, which are given by a piece-
wise smooth constraint equation V,(z) = 0. Limit cy-
cles of designed hybrid systems are composed by elliptic
cylinders and hyperplanes. Synthesis of hybrid systems
with more general form of limit cycles is a future study.
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