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Abstract – In discrete event systems, the supervisor con-
trols events to satisfy the control specifications given by for-
mal languages. However a precise description of the speci-
fications and the discrete event systems is required for con-
structing the supervisor. So, this paper proposes a method
to construct a supervisor based on a reinforcement learn-
ing for partially observed discrete event systems. In the pro-
posed method, specifications are given by rewards, and an
optimal supervisor is derived by considering rewards for the
occurrence of events and disabling events. Moreover learn-
ing speed is accelerated by updating plural Q values. It is
done by utilizing characteristics of a supervisory control. An
efficiency of the proposed method is examined by computer
simulation.

The proposed method shows a new approach for applying
a supervisory control in the case of implicit specifications
and uncertain environment.

Keywords: Supervisory control, reinforcement learning,
discrete event systems, partial observation, optimal control.

1 Introduction
Discrete event systems (DESs) are widely found in arti-

ficial systems, for example database management systems,
communication systems, production systems, and operating
systems. In DESs, discrete events make transitions asyn-
chronously and concurrently. Various researches about the
control of DESs have been made actively [2].

Ramadge and Wonham proposed the supervisory control
as a logical control method for DESs [8], [12]. This synthe-
sizes a controller called a supervisor. The supervisor disables
controllable events in the DES so that all possible strings sat-
isfy control specifications. A set of events permitted to occur
is called a control pattern.

On the other hand, a reinforcement learning has been at-
tracted as a learning method in recent years. Reinforcement
learning is a learning method to obtain a policy based on re-
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wards given from an environment through trial and error [1],
[10].

The supervisor assigns an optimal control pattern in the
sense that language generated by the system is maximized
within given specifications. The reason is less restriction for
the DES is preferred. The supervisory control requires a pre-
cise description of the specification and the DES by a for-
mal language or an automaton. It is a tedious and difficult
task practically. Moreover the supervisory control is a logi-
cal control method, and disables events of the DES. However
costs for enabling or disabling events are not considered. On
the other hand, in reinforcement learning, a learner obtains
an optimal policy in the sense the expected total reward is
maximized through trial and error.

In this paper, we propose a synthesis method of a super-
visor based on a reinforcement learning. Costs for enabling
and disabling events are considered. We introduce rewards
for representation of control specifications, and a detail of
the specifications is obtained through learning. By using re-
inforcement learning, automatization and simplification of
synthesis of the supervisor is achieved. The supervisor learns
desirable control patterns. Both satisfaction of the control
specifications and costs of them are considered at the same
time. Moreover the proposed method accelerates the learn-
ing speed by using characteristics of the supervisory control.
This study is extension from our previous study, which is
only considered a full observation case [13]. In general, it
is difficult to meet the requirements of full observation in
DESs. So we deal with a partial observation case about the
occurrence of events in DESs.

Several studies is done about an optimal control of DESs.
By using the supervisor constructed in advance, a synthe-
sis method of the optimal supervisor which minimizes total
costs about enabling and disabling event is proposed [5], [9].
An optimal supervisory control in a partial observation case
is also proposed [7]. To compared with other studies, our
method has the following advantages. Reinforcement learn-
ing is introduced so that implicit specifications are taken into
consideration and the supervisor can adapt to changing en-



vironments. Moreover synthesis of the optimal supervisor
which is considered the control specifications and costs si-
multaneously is realized.

This paper is organized as follows. Section 2 reviews su-
pervisory control and reinforcement learning briefly. Section
3 describes a system model discussed in this paper, and sec-
tion 4 proposes a synthesis method of the supervisor based
on a reinforcement learning. Section 5 demonstrates the effi-
ciency of the proposed method by computer simulation. Sec-
tion 6 provides the conclusion.

2 Preliminaries
2.1 Supervisory control

A supervisor for a DES controls the occurrence of events
for satisfying logical control specifications [8], [12]. Ex-
amples of specifications are FIFO transaction, avoidance of
deadlock, etc. Events in the DES are divided into control-
lable and uncontrollable, and the control is done by enabling
or disabling controllable events.

A DES controlled by a supervisor is illustrated as Fig. 1.
The supervisor gives a control pattern to the DES. The con-
trol pattern is a set of events permitted to occur. Feasible un-
controllable events could not be disabled to occur. Therefore
they are assumed to be included in the control pattern. Then
the DES selects an event in the control pattern. As a result,
the DES makes a transition to a new state. There is a mask
between the DES and the supervisor, and the mask removes
unobservable events from event strings [3], [6]. Therefore,
the supervisor can observe only the occurrence of observ-
able events. In other words, unobservable events may have
been executed in the DES before observation of the event by
the supervisor. If the supervisor observes an event, the su-
pervisor changes the control pattern based on observed event
strings. The control is achieved by repetition of the above
process.

To construct a supervisor, the DES and the specifications
are represented by a language and an automaton respectively.
Then the supervisor is derived by operations between the au-
tomata. In full observation, a polynomial time algorithm
which maximizes the language generated by the controlled
system is shown. However a precise description of the spec-
ifications needs the computational cost. For example, the
computational cost of the supervisor which satisfies plural
specifications is NP-hard [4].

DES

Supervisor

Control Pattern

Observation of
event occurrence
( only observable events )

Mask

Information of
event occurrence

Figure 1: The DES controlled by the supervisor with mask

2.2 Reinforcement learning
Reinforcement learning is a learning method that a learner

obtains numerical rewards from an environment and learns
a desirable behavior policy. Learning through trial and error
is effective in the case of an uncertain environment, and a
learner adapt to changing environment autonomously [10].

Q-learning is one of the reinforcement learning algo-
rithms. It updates Q values which are evaluations for state-
action pairs. When a learner makes a transition from a cur-
rent state x to a new state x′ by action a and obtains reward
r, Q values are updated as follows:

Q(x, a) ← Q(x, a) + α
[
r

+ γ max
a′ Q(x′, a′)−Q(x, a)

]
, (1)

where Q(x, a) is the estimation of the expected discounted
total rewards when a learner takes an action a at a state x,
α is a learning rate (0 < α < 1), and γ is a discounted
rate of rewards (0 < γ < 1). The Q values converges with
probability 1 to a true value if α decays appropriately and
update of the Q values is done an infinite number of times at
each state-action pair [11].

3 System model
In this section, we show the system model considered in

the paper. We consider the DES controlled by the supervisor
shown in Fig. 1. We suppose that the system is a Markov
Decision Process (MDP) with respect to observation from
the supervisor. Then, Bellman optimal equation for the su-
pervisor is described as follows:

Q∗(s, π) =
∑
s′∈S

P(s, π, s′)

[
R(s, π, s′) + γ max

π′∈Π(s′)
Q∗(s′, π′)

]
, (2)

where

• X : a set of states of the DES. The supervisor can’t
observe directly.

• Σ : a set of events. Σ is divided into a set of con-
trollable events Σc and a set of uncontrollable events
Σuc. Moreover it is also divided into a set of observ-
able events Σo and a set of unobservable events Σuo.
Namely, Σ = Σc∪Σuc, Σc∩Σuc = ∅, Σ = Σo ∪Σuo,
and Σo ∩ Σuo = ∅.

• S : a set of states of the supervisor. S is represented by
a subset of the set of states of the DES, namely S ⊆ 2X .
The supervisor can only know candidates of a state of
the DES as s ∈ S.

• F (s) : a feasible event set at state s ∈ S.

• Π(s) : a set of control patterns at state s ∈ S. Each
control pattern π ∈ Π(s) is a set of events permitted to



occur at state s. For all π ∈ Π(s), F (s) ∩ Σuc ⊆ π ⊆
F (s) ⊆ Σ. Namely, feasible uncontrollable events are
always included in the control pattern.

• P(s, π, s′) : a probability to make a transition from state
s to s′ when the supervisor selects π ∈ Π(s).

• Q∗(s, π): a discounted expected total reward in the case
that the supervisor selects π ∈ Π(s) at state s, then
continues to select control patterns optimally.

• R(s, π, s′): an expected reward when the supervisor se-
lects π ∈ Π(s) at state s, and make a transition to state
s′ ∈ S.

• γ : a discount rate of rewards (0 < γ < 1).

We consider a partial observation case about the DES from
the supervisor. Therefore we introduce the mechanism to
estimate the current state of the DES from strings of events
observed by the supervisor. First, we define several functions
and symbols.

• f : X × Σ → X, a state transition function of the
DES. In this paper, we suppose that f is known for
the supervisor. Moreover, we extend f to a function
f : X × Σ∗ → X as follows:

f(x, ε) = x, (3)
For t ∈ Σ∗ and σ ∈ Σ

f(x, tσ) = f(f(x, t), σ), (4)

where ε is the empty string.

• x0 ∈ X : an initial state of the DES.

• Σ∗ : Kleene closure of Σ. That is a set of all finite
strings over Σ, including the empty string ε.

• Me: Σ→ Σo∪{ε}, a projection function from an event
σ ∈ Σ which occurred in the DES to an event σo ∈ Σo

or ε that the supervisor observes :

Me(σ) =
{

σ if σ ∈ Σo

ε if σ ∈ Σuo.
(5)

Moreover, we extend Me to a function Me : Σ → Σo∗

as follows:

Me(ε) = ε, (6)
∀t ∈ Σ∗, ∀σ ∈ Σ

Me(tσ) =
{

Me(t)σ if σ ∈ Σo

Me(t) if σ ∈ Σuo.
(7)

Me(t) gives the observed string by removing unobserv-
able events from a string t.

• Ms: Σo∗ → S, a projection function from an observed
strings t ∈ Σo∗ to a state of the supervisor:

Ms(t) = {x ∈ X ; ∃u ∈ Σ∗,
Me(u) = t, f(x0, u) = x}. (8)

Ms(t) gives a set of states of the DES whose observed
strings is t. It represents candidates of the current state
of the DES, and the state of the supervisor s as already
defined.

The DES selects an event to occur in the control pattern
given by the supervisor. The supervisor decides the control
pattern based on only the observed information. Therefore,
the following equation holds:

P(s, π, s′) =
∑

σo∈π∩Σo

P1(s, π, σo)P2(s, σo, s′), (9)

where

• P1(s, π, σo) : a probability that the supervisor observes
the occurrence of an event σo ∈ π ∩ Σo when the su-
pervisor selects π ∈ Π(s) at s ∈ S.

• P2(s, σo, s′) : a probability that the supervisor makes a
transition from state s to s′ by an observed event σo.

We make additional hypotheses for the DES.

1. The DES has a parameter η∗(s, σo) for each s ∈ S and
σo ∈ F (s) ∩ Σo. Then the following equations hold:

P1(s, π, σo) =
η∗(s, σo)∑

σo′∈π∩Σo

η∗(s, σo′
)
, (10)

η∗(s, σo) > 0 ,
∑

σo′∈F (s)∩Σo

η∗(s, σo′
) = 1. (11)

The DES selects an observable event in the control pat-
tern, and the supervisor observes the event. Then, a rate
that the supervisor observes the event is given by Eq.
(10). The supervisor does not know the true value of
η∗.

2. RewardR(s, π, x′) has structure as follows:

R(s, π, s′) = R1(s, π) +R2(s, σo, s′), (12)

where

• R1(s, π) : an expectation of reward when the super-
visor selects π at s. It depends on the control pattern,
and represents for the cost to disable events which is not
contained in the control pattern intuitively.

• R2(s, σo, s′) : an expectation of reward when the su-
pervisor observes an event σo ∈ Σo and makes a tran-
sition from s to s′. Intuitively, it represents for costs by
execution of the event and evaluation about the achieve-
ment of the task.



We get the following equation from Eq. (2) by using the
above hypotheses:

Q∗(s, π)

=
∑
s′∈S

( ∑
σo∈π∩Σo

η∗(s, σo)∑
σo′∈π∩Σo η∗(s, σo′ )

P2(s, σo, s′)

)
[
R1(s, π) +R2(s, σo, s′) + γ max

π′∈Π(s′)
Q∗(s′, π′)

]

= R1(s, π) +
∑

σ∈π∩Σo

η∗(s, σo)∑
σo′∈π∩Σo η∗(s, σo′ )

∑
s′∈S

P2(s, σo, s′)
[
R2(s, σo, s′) + γ max

π′∈Π(s′)
Q∗(s′, π′)

]

= R1(s, π) +
∑

σo∈π∩Σo

η∗(s, σo)∑
σo′∈π∩Σo η∗(s, σo′ )

T ∗(s, σo), (13)

where T ∗(s, σo) is a discounted expected total reward when
the supervisor observes σo at state s, and continues to select
the control pattern which has the maximum Q value in the
following states, and defined as follows:

T ∗(s, σo) =
∑
s′∈S

P2(s, σo, s′)

[
R2(s, σo, s′) + γ max

π′∈Π(s′)
Q∗(s′, π′)

]
.(14)

In T ∗(s, σo), rewards by selecting π at s are not included.

4 The proposed algorithm
We propose a learning method of the supervisor for the

system model mentioned in section 3. We illustrate its con-
ceptual diagram in Fig. 2, and its algorithm is given by Fig.
3, where an episode is a series of events and states, and starts
from an initial state and ends at a terminal state. By repeating
episodes, the supervisor proceeds learning.

The objective of learning is not to learn what an event
should be selected, but to learn what a control pattern should
be selected.

By applying Q-learning to framework of the supervi-
sory control, the supervisor learns an optimal control pat-
tern which maximizes the expected discounted total reward
through trial and error. Moreover, acceleration by learning
of plural Q values is achieved in the proposed method.

When the state of the supervisor is s ∈ S, the supervisor
selects a control pattern π ∈ Π(s). There are several meth-
ods for this selection. We use the ε-greedy selection in this
time. So, the supervisor selects the control pattern which has
the maximum Q value with probability 1 − ε, and selects it
randomly with probability ε.

The DES selects an event σ ∈ π. This selection is not
affected by the supervisor, but restricted by Eq. (10). If an
observable event σo ∈ Σooccurred in the DES, the super-
visor observes it. Since there is the mask between the DES
and the supervisor, the supervisor can’t know the execution

DES

Supervisor
( Learner/Controller )

Control 
pattern
π

Information of
event occurrence σ
state transition  x x'

select  an  event

σ  in π

Hard specification set Spec

History H

Me,  Ms

state  estimation s'
acquisition of rewards
r1  and  r2

event  observation σ
o

state transition in the supervisor s  s'

Figure 2: The DES controlled by the learning supervisor

of unobservable event in the DES. There is a possibility that
unobservable events occur in the DES before the supervisor
observes an event. The supervisor obtains two types of re-
ward. One is evaluation for the control pattern π denoted
by r1, and the other is the evaluation for observation of σo

denoted by r2.
In Eq. (13), Q∗ is calculated by R1, η∗, and T ∗. In

other words, it is possible to estimate Q∗ indirectly by us-
ing R1, η∗, and T ∗. Therefore, we prepare three leaning
parameters R1, η, and T . The supervisor updates them as
follows:

T (s, σo) ← T (s, σo) + α[r2

+γ max
π′∈Π(s′)

Q(s′, π′)− T (s, σo)], (15)

R1(s, π) ← R1(s, π) + β[r1 −R1(s, π)], (16)

For all σo′ ∈ π ∩ Σo

η(s, σo′
) ←




(1− δ) η(s, σo′
)

(if σo′ �= σo)

η(s, σo′
) + δ

[ ∑
σo′′∈π∩Σo

η(s, σo′′
)

−η(s, σo′
)

]

(if σo′
= σo),

(17)

where α, β, and δ are learning rates. Then, the supervisor
updates Q values by using T, R1, and η as follows:

For all π′ ∈ Π(s) s.t. π′ ∩ π �= ∅
Q(s, π′) ← R1(s, π′)

+
∑

σo′′∈π′∩Σo

η(s, σo′′
)∑

σo′′′∈π′∩Σo η(s, σo′′′ )
T (s, σo′′

). (18)

The updates is done for not only the control pattern π se-
lected actually, but also control patterns which an event in π
is included.

In ends of each step of the episode, the supervisor checks
whether the current state is contained in Spec, which is a set



of states defined as minimum specifications. If s /∈ Spec, the
supervisor specifies the latest controllable observable event
and the state at that time, and removes the event from the
feasible event set at the state. At the same time, update η
under the constraint

∑
η = 1, and calculate Q value again.

These process removes strings which does not satisfy Spec.
It is regarded as a kind of pruning for efficiency of learning
and assurance of the minimum specifications.

The proposed algorithm synthesizes a supervisor through
learning of control patterns which maximize the expected to-
tal reward. Both specifications and costs of the DES is con-
sidared at the same time, and it is required to satisfy a hard
specification Spec. The algorithm in the case of full obser-
vation is regarded as Σo = Σ in the proposed algorithm.

5 Simulation
We demonstrate efficiency of the proposed method by

computer simulation of the cat and mouse problem. It is a
simple problem used in [12]. There are five rooms parti-
tioned by one-way doors as shown in Fig. 4. Each door is
used by a cat or a mouse exclusively. In Fig. 4, c1 ∼ c7 are
doors for a cat, and m1 ∼ m6 are doors for a mouse. In the
original problem, c7 is an uncontrollable door, but c7 is an
uncontrollable and unobservable door in our setting. Other
doors are controllable and observable. A goal is to control
doors so as not to encounter a cat and a mouse in the same
room. A control pattern means what doors should be closed.

In initial state, a cat is in room 2, and a mouse is in room
4. For closing each door except c7, it takes a cost. The cost
depends on a normal distribution that the average is −1 and
the variance is 0.1. Hence a reward r1 is given by sum of
costs to close doors. One episode ends when 20 step passed
or the cat and the mouse encountered in a room. In the latter
case, a reward r2 = −100 is given for fail of control. Other
parameters are set as follows: α = β = δ = 0.1, and γ =
0.9. We use ε−greedy selection to select a control pattern,
and set ε = 0.1.

Fig. 5 shows the relationship between the number of
episodes and the fraction that the supervisor found the op-
timal control pattern in the maze for cat and mouse problem.
In order to ¡make a comparison with the proposed method,
we used a simple Q-learning. In the simple Q-learning, Q
value is updated only for a control pattern selected by the su-
pervisor actually. The result is the average of learning of 100
times. In both methods, the optimal supervisor is obtained
after several hundreds of episodes, but the proposed method
is superior to the simple Q-learning with respect to speed of
learning. Fig. 6 shows the transition diagram of the learned
control pattern. In each circle, the first digit shows a room
in which a cat exists, and the second digit shows a room in
which a mouse exists, respectively. Each arrow shows a door
allowed to open in the source state. The supervisor control-
ling doors so as not to encounter a cat and a mouse is synthe-
sized through learning.

� �

� �

1. Initialize T (s, σo), R1(s, π) , and η(s, σo) at each state in
the supervisor.
2. Calculate the initial Q value at each state by

Q(s, π) ← R1(s, π)

+
∑

σo∈π∩Σo

η(s, σo)∑
σo′∈π∩Σo η(s, σo′ )

T (s, σo).

3. Repeat until s is a terminal state (for each episode):
(a) Clear history H and initialize strings t← ε.
(b) s← initial state in DES.
(c) Repeat (for each step of episode)

i. Select a control pattern π ∈ Π(s) based on the Q values
by the supervisor.
ii. Observe the occurrence of event σo ∈ Σo , update
t← tσo, and estimate a new state s′( = Ms(t) ).

iii. Acquire rewards r1 and r2.

iv. Make a transition s
σo→ s′ in the supervisor.

v. Add (s, σo) to history H .
vi. Update T (s, σo),R1(s, π), and η(s, σo′ ) :

T (s, σo) ← T (s, σo) + α[r2

+ γ max
π′∈Π(s′)

Q(s′, π′)− T (s, σo)],

R1(s, π) ← R1(s, π) + β[r1 −R1(s,π)],

For all σo′ ∈ π ∩ Σo

η(s, σo′ ) ←




(1− δ)η(s, σo′ )

(if σo′ �= σo)

η(s, σo′ )

+δ


 ∑

σo′′∈π∩Σo

η(s, σo′′ ) − η(s, σo′ )




(if σo′ = σo).

vii. Update the Q values:

For all π′ ∈ Π(s) s.t. π′ ∩ π �= ∅
Q(s, π′) ← R1(s, π

′)

+
∑

σo′′∈π′∩Σo

η(s, σo′′ )∑
σo′′′∈π′∩Σo η(s, σo′′′ )

T (s, σo′′ ).

viii. If s′ /∈ Spec:
A. Search the latest observable and controllable event
σc,o ∈ Σc ∩ Σo and the corresponding state w ∈ S
from the history H .

B. Remove σc,o from the feasible event set F (w).
C. Normalize η(w, σo′ ) so as to satisfy∑
σo′∈F (w)∩Σo

η(w, σo′ ) = 1, and update the Q values at

the state w.
ix. s← s′.

Figure 3: The proposed algorithm for construction of a su-
pervisor
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6 Conclusions
This paper proposed a synthesis method to construct a

supervisor based on Q-learning by using characteristics of
supervisory control. The partial observation case is consid-
ered. In ordinary supervisory control, it is a difficult and te-
dious task to describe control specifications. In the proposed
method, detail of specifications are obtained through learn-
ing based on rewards. We show a method to apply supervi-
sory control for more wide problems under implicit specifi-
cations and changing environment. In the proposed method,
there is a problem that a number of control patterns increases
exponentially as a number of events increases.

It is needed that extension to the decentralized supervisory
control by using multi-agent oriented reinforcement learn-
ing. Theoretical analysis with respect to a maximal control-
lable languages in the proposed method is also future work.
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