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Abstract

Periodic motion patterns of a humanoid robot can be char-
acterized by several closed curves in a high dimensional
space corresponding to the degree-of-freedom of the robot.
Whole body motions are expressed by combining and inter-
acting these patterns. However, it is difficult to select suitable
motion dynamically. Both synthesis of nonlinear systems
with a limit cycle corresponding to each periodic motion and
suitable transitions between periodic motions are very useful
to realize adaptive behaviors according to environments. In
this paper, we propose a Lyapunov function based method of
periodic motion generation and a method of dynamic tran-
sition between motions of humanoid robots. The transient
behavior between motions is achieved by destabilizing the
current motion and stabilizing the next motion.

Keywords: Motion generation, Whole body motion,
Lyapunov function, Nonlinear dynamics

1. Introduction

Flexible motion generation of humanoid robots is
one of the most challenging problems, and many ap-
proaches have been proposed [1, 2]. Among them,
application of nonlinear dynamics is useful for repre-
senting periodic motions such as gaits. For example,
a central pattern generator is a functional neural net-
work which produces a coordinated activities in legged
animals, and its mathematical model is applied to hu-
manoid robots [3]. In order to apply nonlinear dynam-
ics to motion generator of humanoid robots, we have
two problems: one is representation (symbolization)
of typical periodic motions in a reduced state space
since humanoid robots have large number of degree-of-
freedom. The other is a mechanism of dynamic change
of periodic motions in order to adapt their behaviors to
environments.

For the representation problem of periodic motions,
many methods have been proposed. Tatani and Naka-
mura showed a possibility of representation of motion

patterns [4]. They obtained common space of a mo-
tion pattern by hierarchically arranged neural networks
which can reduce the dimension of motion effectively.
Okada et al. also showed a reduction method of the
whole body motion based on the principal component
analysis using singular value decomposition [5].

For the second problem, Sekiguchi and Nakamura
developed the behavior control of robots by using non-
linear phenomena, such as entrainment and synchro-
nization [6]. Dynamic changes of periodic motions are
also achieved by switching of vector fields [5]. Ob-
viously, transient behaviors from one periodic motion
to another are closely related to switching procedure
of vector fields so that the current periodic motion are
destabilized and a desired periodic motion is stabilized.
But there are few studies for taking into consideration
how to change the vector fields.

This paper propose a Lyapunov function based syn-
thesis of motion generation of humanoid robots. In the
proposed method, we calculate a Lyapunov function
which keeps constant on a periodic motion and obtain
a desired system. The designed system has a stable
limit cycle corresponding to a periodic motion, and it
is easy to change the stability of the limit cycle. Our
proposed method is based on [7, 8, 9, 10].

This paper is organized as follows. In Section 2, we
revisit some useful results reported in [10], and show
a designing method of the system which generates a
smooth periodic motion. In Section 3, we introduce
piecewise quadratic Lyapunov functions, and genera-
tion of nonsmooth periodic motions is discussed. In
Section 4, we design the humanoid whole body motion
by connecting the obtained systems.

2. Generation of Smooth Motions

In this section, we first review a design method of non-
linear system with a smooth motion pattern proposed
by Green [10].



2.1. Preliminary

We consider the following continuous differential
equations:

ẋ = f(x) + g(x), (1)

where f : R
n → R

n, g : Rn → R
n.

Green shows sufficient conditions for the trajecto-
ries of (1) converge to a limit cycle satisfying a given
constraint V (x) = 0, where V : R

n → R
m is contin-

uously differentiable.

Theorem 1 (Green [10]) If there exists a continu-
ously differentiable function V : Ω → R

m where Ω
is a subset of R

n, n > m, such that

•
∂V (x)

∂x
f(x) = 0, ∀x ∈ Ω

• For each µth component of V, 1 ≤ µ ≤ m,
∂Vµ(x)

∂x
g(x)Vµ(x) < 0,

∀x ∈ Ω such that Vµ(x(t)) 6= 0.

Then, all trajectories of (1) converge to V (x) = 0 as
t → ∞.

Corollary 1 (Green [10]) Let Va : R
n → R

ma , Vb :
R

n → R
mb , ma + mb = m. Assume that Va satisfies

the conditions of Theorem 1. If all solutions of (1) with
initial conditions in Ω are bounded, then the second
condition of Theorem 1 is rewritten as follows:

• For each µth component of Vb, 1 ≤ µ ≤ mb,
∂Vµ(x)

∂x
g(x)Vµ(x) < 0,

∀x ∈ Ω such that Va(x) = 0.

If there exists a Lyapunov function V (x) which sat-
isfies Theorem 1 for (1), a trajectory starting from any
initial point converges to the hypersurface V (x) = 0,
and the steady state forms a closed curve on this hyper-
surface.

Here, it is noted that an arbitrary periodic solution in
n-dimensional space can be expressed by using Fourier
series and Chebyshev polynomials as follows :

y(t) =

∞
∑

k=0

{

αk cos(kωt) + βk sin(kωt)
}

=

∞
∑

k=0

{

akTk(cos(ωt)) + bk sin(ωt)Uk(cos(ωt))
}

= F1(cos(ωt)) + sin(ωt)F2(cos(ωt)), (2)

where y(t), αk and βk ∈ R
n, ak and bk depend on αk

and βk, Tk and Uk are the kth Chebyshev polynomials
of the first and second kind respectively, F1, F2 : R →
R

n.

From Theorem 1 and Corollary 1, if (1) is restricted
to the following form:

ẋ = f(x) + g(x)

= ω









0 1
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−∂F1(x2)

∂x2

− x1

F2(x2)
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F2(x2)









[

x1

x2

]

+α





x1(1 − x2
1 − x2

2)
x2(1 − x2

1 − x2
2)

F1(x2) + x1F2(x2) − y



 , (3)

where α > 0 represents the convergence rate. Then
there exists the following Lyapunov function:

V (x) =

[

x2
1 + x2

2 − 1
F1(x2) + x1F2(x2) − y

]

. (4)

All trajectories of this differential equation con-
verge to the hypersurface V (x) = 0, i.e., x1(t) =
sin(ωt), x2(t) = cos(ωt) and y(t) = F1(x2(t)) +
x1(t)F2(x2(t)) respectively as t → ∞. This re-
sult shows that this system can generate an arbitrary
asymptotically stable limit cycle.

2.2. Design of the system

Consider the humanoid robots with n degree-of-
freedom. For a periodic motion like gait, for example,
the motion data M is given as follows:

M =











θ1[t1] θ1[t2] · · · θ1[tT ]
θ2[t1] θ2[t2] · · · θ2[tT ]

...
...

...
θn[t1] θn[t2] · · · θn[tT ]











, (5)

where θi[tj ] is the ith joint angle at the time tj . Gen-
erally, it is difficult to treat the motion data M with-
out any reduction because the humanoid robot has high
degree-of-freedom. So first, we reduce the motion data
M to a lower-dimensional data. By applying a reduc-
tion method using singular value decomposition [5],
the reduced data is obtained as follows:

M = USV T ,

U =
[

U1 U2

]

,

S = blockdiag{S1 S2},

S1 = diag{s1 s2 . . . sm},

S2 = diag{sm+1 sm+2 . . . sn},

V =
[

V1 V2

]

,
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Figure 1: Time sequence of reduced “walk” motion.
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Figure 2: Closed curve of the reduced “walk” motion.

if sm � sm+1 is satisfied, the motion data M is re-
duced to m-dimensional data V T

1 as follows:

M = U1S1V
T
1 . (6)

In this paper, V T
1 is called a reduced motion data Y .

Figures 1 and 2 show a time sequence of reduced
“walk” motion data Yw ∈ R

3 and its closed curve.
From (2), we approximate the reduced data Y as fol-
lows:

y(t) =

l
∑

k=0

{

αk cos(kωt) + βk sin(kωt)
}

(7)

where l is an appropriate constant. Then, we have

Λ = (ΦT Φ)−1ΦT Y T (8)
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Figure 3: Trajectory of the designed system with reduced
“walk” motion.

where

Λ =
[

α0 α1 · · · αl β1 · · · βl

]T
,

Φ =













1 cos(t1) · · · cos(lt1) sin(t1) · · · sin(lt1)

1 cos(t2) · · · cos(lt2) sin(t2) · · · sin(lt2)

...
...

...
...

...

1 cos(tT ) · · · cos(ltT ) sin(tT ) · · · sin(ltT )













.

Thus, we get the function y(t) which is an approxima-
tion of Y

y(t) = F1(cos(ωt)) + sin(ωt)F2(cos(ωt)). (9)

By substituting (9) into (3), we obtain the desired sys-
tem. Figure 3 shows a trajectory of the designed sys-
tem which is approximated by l = 9. When l is suf-
ficiently large, this system generates a asymptotically
stable limit cycle corresponding to the closed curve of
the reduced motion data Y .

3. Generation of Nonsmooth Motions

The motion of humanoid robots is subject to geometric
constraints. These constraints cause the nonsmooth-
ness of motion. However, the method proposed in
the previous section does not generate a nonsmooth
limit cycles. In this section, we propose a synthesis
of system which generates a nonsmooth periodic mo-
tion. For simplicity, to generate a nonsmooth motion
we use a piecewise quadratic Lyapunov function [11].

We split the reduced motion data Y into several
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Figure 4: Splitting a nonsmooth closed curve into some el-
lipsoidal curves.
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Figure 5: An ellipsoidal curve defined by an elliptic cylinder
and a hyperplane.

components as follows:

Y =
[

Y1 Y2 · · · YQ

]

=











y1[t1] · · · · · · · · · y1[tT ]
y2[t1] · · · · · · · · · y2[tT ]

...
...

ym[t1] · · · · · · · · · ym[tT ]











. (10)

The reduced space is split into several polyhedral re-
gions whose boundaries are given by hyperplanes, and
the periodic motions are represented by an ellipsoidal
curve in each region Rq as shown in Figure 4.

By constructing subsystems corresponding to each
ellipsoidal curve and switching those subsystems, non-
smooth motion pattern can be realized. Assume that
each component Yq, q = 1, . . . , Q can be approxi-
mated by an elliptic cylinder and a hyperplane (Figure
5). Hence, the approximated ellipsoidal curve is given
by Vq(y) = 0, Vq : Rm → R

m−1

Vq =



















Vq1

Vq2

...
Vqm−1



















=



















[

y1 y2 1
]

[

Pq pq

pq π

]





y1

y2

1





ζq2
y1 + ηq2

y2 + λq2
− y3

...
ζqm−1

y1 + ηqm−1
y2 + λqm−1

− ym



















(11)
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Figure 6: Piecewise quadratic Lyapunov function Vq1
.

where Pq is a positive definite matrix.

Here, in order to guarantee the stability of limit cy-
cle in this switched system, as reported in [12], Vq1

(y)
is not allowed to choose freely when subsystems are
combined. The requirement is the continuity of Lya-
punov functions Vq1

(y) on all region boundaries (Fig-
ure 6). The boundary between Rq and Rr is given by

c̃T
q,r





y1

y2

1



 = 0, (12)

where c̃q,r =
[

cT
q,r dq,r

]T
, and cq,r ∈ R

2, dq,r ∈ R.
The Lyapunov function Vq1

(y) is piecewise quadratic
if and only if, for some t̃q,r ∈ R

3,

P̃r = P̃q + t̃Tq,r c̃q,r + c̃T
q,r t̃q,r, (13)

where P̃q =

[

Pq pq

pT
q π

]

. If each region forms a polyhe-

dron with pairwise disjoint interior, we can obtain the
following matrices for each region:

Ẽq =
[

Eq eq

]

, F̃q =
[

Fq fq

]

,

where

Ẽq





y1

y2

1



 ≥ 0, y ∈ Rq, (14)

F̃q





y1

y2

1



 = F̃r





y1

y2

1



 , y ∈ Rq ∩Rr. (15)

By using this representation, the requirement that a
Lyapunov function is continuous at every point on the
region boundary can be written as

P̃q = F̃qT F̃q, (16)

where T is a symmetric matrix.



For ellipsoidal curves Vq(y) = 0, q = 1, . . . , Q ap-
proximated under the condition (13) or (16), we can
synthesize the following switched system whose tra-
jectories converge to a nonsmooth periodic motion:

ẏ = f(y) + g(y)

=











Aq aq

Ξq1
ξq1

...
...

Ξqm−2
ξqm−2















y1

y2

1



 + α

















Vq1

[

Bqbq

]





y1

y2

1





Vq2

...
Vqm−1

















if y ∈ Rq. (17)

where Aq, Bq ∈ R
2×2, aq, bq ∈ R

2×1, Ξqi
∈ R

1×2,
ξqi

∈ R, i = 1, . . . , m− 2. Here Aq, aq, Bq and bq are
given by

ÃqP̃q + P̃qÃq = 0, (18)

B̃qP̃q + P̃qB̃q < 0, (19)

where Ãq =

[

Aq aq

0 0

]

, B̃q =

[

Bq bq

0 0

]

. We can

simply choose these matrices as follows:

Ãq = G̃Aq
P̃q, G̃Aq

=

[

GAq
0

0 0

]

, (20)

where GAq
is an arbitrary skew-symmetric matrix. The

matrix B̃q can be chosen as follows:

B̃q = G̃Bq
P̃q, G̃Bq

=

[

GBq
0

0 0

]

, (21)

where GBq
is a matrix which satisfies GT

Bq
+GBq

< 0.
Furthermore, Ξqi

and ξqi
are determined by

[

Ξqi
ξqi

]

=
[

ζqi
ηqi

] [

Aq aq

]

. (22)

Figure 7 shows a trajectory of designed system cor-
responding to reduced “squat” motion Ys ∈ R

3. In
the proposed method, how to divide the motion data
Y depend on the designer. In Figure 7, we simply di-
vide motion data “squat” into two parts. It is clear that
the approximation becomes accurate when we split the
motion data into a large number of components. The
restriction (13) or (16), however, becomes tight.

4. Design of Whole Body Motions

In this section, we design the humanoid whole body
motion. It is clear that designed system ẏ = f(y) +
g(y) can be easily destabilized by changing g(x) to
−g(x). When we consider whole body motion in
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Figure 7: Trajectory of the designed system with reduced
“squat” motion.

which there exists multiple motion patterns this prop-
erty is useful for trajectories to diverge from the current
motion and converge to the next motion.

We consider the systems Σ and Σ̂ with stable and
unstable limit cycle (periodic motion), respectively.

Σ : ẏ = f(y) + g(y), (23)

Σ̂ : ẏ = f(y) − g(y). (24)

For example, we consider the transition from “walk”
motion to “squat” motion. The transient dynamics is
described by

ẏ = wws(τ)(fw(y) − gw(y))

+ (1 − wws(τ))(fs(y) + gs(y)), (25)

where the subscription w (resp. s) means a function
related to “walk” (resp. “squat”), and τ is set to be 0
when the transition of motion occurs and wws is the
weight function:

wws(τ) =
1

exp(εwsτ)
. (26)

εws represents the changing rate of vector fields. When
the transition occurs, the trajectory starts to leave from
the current motion and converge to the next motion,
and after some time passed the vector fields of Σ̂w al-
most disappear and those of Σs are dominant. This
transient dynamics enable trajectories to transfer be-
tween motions smoothly. Figures 8 (resp. Figure 9)
shows a whole body motion from “walk” to “squat”,
where εws equals 5 (resp. 500). In Figure 8, the chang-
ing rate of vector fields εws is small, and a smooth tran-
sition occurs. On the other hand, in Figure 9, εws is
large, and a steep transition occurs. Thus, εws can con-
trol the transient behavior between motions.
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Figure 8: Transition of motion from “walk” to ”squat”
(εws = 5).

5. Conclusions

We have proposed a design method for a nonlinear sys-
tem which generates a periodic motion of humanoid
robots. First, for the smooth motion generation, we in-
troduce a Lyapunov function based nonlinear system
with a stable limit cycle based on conventional tech-
niques. Second, for the nonsmooth motion genera-
tion, we employ piecewise quadratic Lyapunov func-
tion in order to realize nonsmoothness, and obtained
a switched system. The proposed system, however,
still have computational difficulties. Finally, the hu-
manoid whole body motion is generated by combining
designed systems. The transient behavior of motion
is controlled by changing the stability of periodic mo-
tions gradually.
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