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Abstract— In this paper, we propose a supervi-
sory control system for motion planning of humanoid
robots. The proposed system is hierarchically struc-
tured into two levels. The lower level controls and
monitors the robots using modular state nets. The
upper level generates an optimal sequence of motion
for user’s requirements using timed Petri nets.
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I. Introduction

Recently, there have been many researches for motion
planning of Humanoid robots. In order to control be-
haviors of humanoid robots, a state net architecture has
been proposed by Kanehiro et al.[1]. Since the action
space is represented as a state transition graph which is
embedded in a sensory space, the architecture has two
advantages: easiness of incremental extensions and in-
tegrations, and an autonomous error recovery. But, in
humanoid robots, there are many sensors so that the
dimension of the state space becomes large.

In this paper, we introduce a modular state net which
is a state net representing behaviors of a part of the
robots such as arms, legs, and so on, and behaviors of
the robots are represented by a combination of modular
state nets for those parts. To have a feasible path of
the whole body, we introduce a timed Petri net as an
abstracted model of the set of all modular state nets. We
give an example to model a humanoid robot HOAP-1
and show simulation and experiment results of signaling
with flags.

II. Modular State Net

In order to control a humanoid robot, a state net
architecture is proposed as a state transition graph
which is embedded in a sensory space as shown in
Fig. 1. A point p in the sensory space has a coordinate
p = [s1 s2 · · · sN ] where each si is sensory information
such as a joint angle. So a node in the state net shows
a stationary state of the humanoid robot. An action is
defined as a timed trajectory p(t) in the sensory space
which starts at a node and ends at another node. In
the state net architecture, we can update the network
by adding new nodes or arcs. We can also detect an
occurrence of an error by comparing the current sen-
sory information and a coordinate of an executing ac-
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tion. But some humanoid robots have many sensors and
the number of the dimension of the state becomes large
and it becomes difficult to prepare enough actions to
give various motions. So we decide the state vector p =
[s1 s2 · · · sN ] into sub vectors such as p = [p1 p2 · · · pM ]
= [s1 · · · si1 |si1+1 · · · si2 | · · · |siM−1+1 · · · sN ]. The order
of elements of p and the division is designed such that
each pj shows a part of the body of the humanoid robot,
such as arms, legs, and so on. Thus we introduce a state
net for each sub space, which will be called a modular
state net in the following.

In a modular state net architecture, we can design mo-
tions of a part of the humanoid robot individually, and
a motion of the whole body is given as a combination
of actions of modular state nets. Since the number of
the combinations is large, various actions are expected
to be generated. But all of the combinations are not
feasible since some of them may cause a conflict or may
not satisfy a dynamic constraint. In order to find a fea-
sible path, we introduce an abstracted model of the set
of all modular state nets, where no sensory information
appears explicitly.

III. Timed Petri Net

We introduce a timed Petri net to model the set of all
modular state nets. The timed Petri net is given by 6-
tuple G = (P, T, A, F, θ, m0). We decompose the place
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set P into two subsets Ps and Pd, where P = Ps ∪ Pd

and Ps ∩ Pd = ∅. A place in Ps means a node in one
of the modular state net, a stationary state, while a
place in Pd means an arc in one of the modular state
net, an executing of an action. We also decompose the
transition set T into two subsets Ts and Te, where T =
Ts ∪ Te and Ts ∩ Te = ∅. Firing of a transition in Ts

is a start of an action, while firing of a transition in Te

means completion of an action. All transitions in Ts are
controllable since we can prevent them from firing. But
all transitions in Te are uncontrollable since the actions
are timed trajectories and they must reach ending state
in a certain time. A : (P × T ) ∪ (T × P ) → N is a set
of arcs. F : P × T → N is a set of inhibitor arcs. The
time from start to completion of an action is modeled
by θ : Pd → <. The initial marking is given by m0 : P
→ N .

A transition t ∈ T is said to be enabled if

∀p ∈ P : m(p) ≥ A(p, t) (1)

and

∀p ∈ P : F (p, t) = 0 ∨m(p) = 0 , (2)

and we write m[t >. A trace is defined as a sequence
of transitions. when σ = t1t2 · · · tn satisfies m0[t1 >
m1[t2 > · · ·mn−1[tn >, we write m0[σ >.

If the enabled transition t fires, the marking changes
to m′ given by

m′(p) = m(p)−A(p, t) + A(t, p) (3)

and we write m[t > m′. If a token comes into a place p
∈ Pd at time τ , the token is not available for firing until
τ +θ(p), and usually an uncontrollable transition t ∈ Te

that have an input arc from p fires at τ + θ(p).
Graphical representations of Petri nets are as follows:

places in Ps, places in Pd, transitions, connections, in-
hibitor arcs, and tokens are represented by circles “©”,
boxes “2”, bars “|”, arcs “→”, “—◦”, and bullets “•”,
respectively. The arcs connected to a transition show
how tokens move when the transition fires.

Inhibitor arcs are used to avoid sequential or parallel
combinations of actions in different modular state nets.
There are two kinds of connections of inhibitor arcs.
One is from a static place in Ps to a transition in Ts

that implies an infeasible sequential combination. In
the example in Fig. 2, the left arm cannot start moving
until the right arm starts moving. The other is from a
dynamic place in Pd to a transition in Ts that implies an
infeasible parallel combination. In the example in Fig. 3,
the left arm cannot start moving until the right arm
finishes moving. Some transition may have inhibitor
arcs from both a static place and a following dynamic
place.

However a trace σ = tl
s12t

r
s12t

r
e12t

l
e12 may satisfy

m0[σ >, σ is not feasible when θ(pl
d12) < θ(pr

d12). Be-
cause if we let the timed trace as (tl

s12, τ1) (tr
s12, τ2)

(tr
e12, τ3) (tl

e12, τ4), then τ4 = τ1 + θ(pl
d12) and τ3 =

τ2 + θ(pr
d12) contradict τ1 ≤ τ2 ≤ τ3 ≤ τ4. If a

trace is feasible in this sense, the minimum time to ex-
ecute the transition is defined. When a timed Petri

net G = (P, T, A, F, θ, m0) is safe, namely, m(p) ≤ 1
(∀p ∈ P, m0[∀σ > m), feasibility and minimum time
are calculated in the following way. First we define a
timed marking with m : P → B and ψ : P → <+,
where B = {0, 1} and <+ is the set of all nonnegative
real numbers. If m(p) = 1, ψ(p) means when the token
comes into p. Thus if a transition t fires at time τ , ψ is
updated as follows:

ψ′(p) =

{
τ (A(t, p) > A(p, t))

ψ(p) (A(t, p) = A(p, t))
. (4)

We write (3) and (4) as (m, ψ)[(t, τ) > (m′, ψ′). Then a
transition t ∈ Te is feasible when m[t > and for pa such
that A(pa, t) > 0,

max
p∈P

ψ(p) < ψ(pa) + θ(pa) (5)

and the minimum time for firing is given as

τmin(m, ψ, t) = ψ(pa) + θ(pa) (A(pa, t) > 0). (6)

If t ∈ Ts, τmin(m, ψ, t) = maxp∈P ψ(p). Repetition of
(4)–(6) gives a feasibility check and the minimum exe-
cuting time for a trace σ = t1t2 · · · tn. When it holds
that τi = τmin(mi−1, ψi−1, ti) and (mi−1, ψi−1)[(ti, τi) >
(mi, ψi) (i = 1, 2, · · · , n) , σ is said to be feasible at
(m0, ψ0). If σ is feasible, τmin(m0, ψ0, σ) = τn is de-
fined. Assuming ψ0(p) = 0 (∀p ∈ P ), we also define
τmin(m0, σ) = τn. The set of all feasible trace is de-
noted by LF (m0) ⊂ T ∗, where T ∗ is the Kleene closure
of T .

If a timed marking (m, ψ) has a place pa ∈ Pd such
that m(pa) = 1 and

max
p∈P

ψ(p) > ψ(pa) + θ(pa) , (7)

then (m, ψ) is an error state and a supervisory controller
must avoid such states.

IV. Optimal Path Planning

We use a kind of limited lookahead policy supervisory
controller[4] to find an optimal path from the current
state to any given desired state. Calculating a tree con-
sists of all possible path with finite length, we search for
a path from the current state to the desired state. We
enlarge the length of the tree one by one to find optimal
paths that have shortest time to execute.

Let a goal marking mG. We search for an optimal
trace σo ∈ LF (m0) such that m0[σo > mG and

τmin(m0, σo) ≤ τmin(m0, σ) (m0[∀σ > mG) . (8)

A set of feasible traces with length N is denoted by
SN . Searching the goal marking mG, we have RN ⊂ SN

as a set of σ such that m0[σ > mG and σ ∈ SN . The set
∪i≤NSi gives N -length tree and we let GN be the set of
optimal traces to reach goal in the N -length tree. The
minimum time to reach goal in the tree is also denoted
by τN . Then the following inductive algorithm gives the
set of all optimal paths.

1. Let S0 = {ε}. R0 = ∅, G0 = ∅, τ0 = ∞, N = 1.
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Fig. 2. Inhibitor arc from static place

�

��� � ����� � 	
���


������� ����


�
��� �����

� �
���

� �  ���
�

�!�
�

"
��� � �����

" �
���

" �  ���
"

�!�
"

Fig. 3. Inhibitor arc from dynamic place
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Fig. 4. Tree for finding the optimal traces

2. Let SN = {σ′|σ′ = σt ∈ LF (m0), t ∈ T, σ ∈
SN−1\RN−1, τmin(m0, σ

′) < τN−1} and RN =
{σ|σ ∈ SN , m0[σ > mG}.

3. τN = min{τN−1, minσ∈RN τmin(m0, σ)}.
4. If τN < τN − 1 then GN = {σ|σ ∈

RN , τmin(m0, σ) = τN} else GN = GN−1 ∪ {σ|σ ∈
RN , τmin(m0, σ) = τN}.

5. If SN 6= ∅ then N = N + 1 and go back to 2.
otherwise GN is the set of optimal traces and τN

is the minimum time.
In 2. the tree is enlarged by one step while the goal nodes
are terminated and the infeasible nodes are ignored. If
an executing time is turned to be over the optimal time,
the node is also ignored. In 3. the optimal time is up-
dated if there exists a new goal node whose time is less
than previous optimal time. In 4. if the optimal time
is updated, GN is replaced by the new goal nodes that
have new optimal time, otherwise new goal nodes that
have the same time is added to GN . Since any transi-
tion t ∈ Te needs positive time for firing, this algorithm
is over in finite steps. An example of this algorithm is
illustrated in Fig. 4, where mi is a marking of a node,
and τ is the minimum time to reach a node.

To reduce calculating cost, we give another algo-
rithm. Suppose there are two trace σ1 and σ2 such
that m0[σ1 > ma, m0[σ2 > ma and τmin(m0, σ1) <
τmin(m0, σ2). The branch following σ2 is less expected
to have optimal path than the branch following σ1. Ter-
minating the node σ2, we can cut much cost although
we may have only semi-optimal solutions.

We introduce a set of marking Mn which consists of
all markings in the tree ∪i≤NSN and a map Fn : Mn

→ <+ ∪ {0} which shows the minimum time to reach
a marking. Updating 2. and 5., we give improved algo-
rithm as follows:

1. Let S0 = {ε}. R0 = ∅, G0 = ∅, τ0 = ∞, M0 = ∅,
N = 1.
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Fig. 5. Tree by improved algorithm

2. Let SN = {σ′|σ′ = σt ∈ LF (m0), t ∈ T ,
σ ∈ SN−1\RN−1 , τmin(m0, σ

′) < τN−1,
(m0[σ

′ > m′ ∈ MN−1 ⇒ τmin(m0, σ
′) ≤ Fn−1(m

′))}
and RN = {σ|σ ∈ SN , m0[σ > mG}.

3. τN = min{τN−1, minσ∈RN τmin(m0, σ)}.
4. If τN < τN − 1 then GN = {σ|σ ∈

RN , τmin(m0, σ) = τN} else GN = GN−1 ∪ {σ|σ ∈
RN , τmin(m0, σ) = τN}.

5. Let MN = MN−1 ∪ {m|σ ∈ SN , m0[σ > m} and
for all m such that there exists σ ∈ SN and m0[σ >
m, let FN (m) = τmin(m0, σ). We also let for all
m ∈ MN \ {m|σ ∈ SN , m0[σ > m}, FN (m) =
FN−1(m).

6. If SN 6= ∅ then N = N + 1 and go back to 2.
otherwise GN is the set of optimal traces and τN

is the minimum time.
In 2. we ignore a node whose marking (m′) is already
appeared in the tree (i.e. m′ ∈ MN−1) and whose exe-
cuting time (τmin(m0, σ

′)) is grater than the minimum
reaching time of the marking (FN−1(m

′)). Since MN

contains the markings of all nodes in the tree, we add
the markings of all new nodes in 5. Since new node has
a marking that is not an entry of MN−1 or that has the
minimum executing time for the marking, FN is updated
for all new markings. An example of this algorithm is
illustrated in Fig. 5, where a node with marking m1 is
cut to reduce calculating cost.

Eq. (4) shows the minimum executing time is not de-
pend on a marking m but on a timed marking (m, ψ)
and this is the reason why this algorithm may overlook
some optimal traces. But this influence is usually small
and we can expect reasonable solutions.

V. Total System

We propose a system to select an optimal motion of
a humanoid robot for a given requirement. As shown
in Fig. 6, the system is hierarchically structured. The
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Fig. 6. Hierarchical structure of the proposed System

lower level consists of modular state nets. Each modu-
lar state net monitors and controls trajectories of parts
of the humanoid robot. In the higher level, sequential
or parallel combinations of the actions are planned to
optimize the trajectory of the whole body.

The proposed system is shown in detail in Fig. 7.
There is a timed Petri net that models the modular state
nets in path planning. A planned path is checked by
feasibility check and collision check. If they de-
tected a collision for executing the planned path, the
time Petri net is updated by adding an inhibitor arc to
avoid planning the path again. Otherwise the planned
path is sent to the command queue. The commands
are sent one by one to the corresponding modular state
net by command server. If a starting event is sent to
a modular state net, the corresponding action starts.
Once an action starts, the modular state net refuses to
recieve the corresponding ending event until the action
is over. The result of executing the commands are de-
tected by event translator.
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Fig. 7. Control system

VI. Simulation Result

To show the effectiveness of our method, we show
an simulation result. A model of a humanoid robot is

designed for a humanoid robot HOAP-1 (Fujitsu Au-
tomation Company) whose height is 0.438[m], weight is
5.67[kg], number of joints is 20 (each arm has 4 joints).
The task for the robot is a simple example of signal-
ing with flags, that is to find an optimal path from any
given initial state to any given goal state and to control
the robot along the path.

First, we make modular state nets for both arms,
that are shown in Figs. 8,9. The Nets for right and
left arms have states sr

0 to sr
7 and sl

0 to sl
8, respec-

tively. The arc from sr
i to sr

j is denoted by ar
ij , and

so on. The executing time of each arc is shown in
Tables. I, II. These state nets are abstracted by a
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Fig. 8. Module of right arm
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Fig. 9. Module of left arm

timed Petri net. The set of static place is given by
Ps = {pr

si, p
l
sj |i = 0, 1, · · · , 7, j = 0, 1, · · · , 8}. The

places pr
si and pl

sj means the nodes sr
i and sl

j , respec-
tively. The set of dynamic place is given by Pd =
{pr

dij , p
l
dkl|(i, j) = 0, 1, · · · , 7, (k, l) = 0, 1, · · · , 8}. The

places pr
dij and pl

dij means the arcs ar
ij and al

ij , re-
spectively. The sets of transitions are denoted by Ts =
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Fig. 10. A part of Petri net model

TABLE I

Execution time of right arc

arc ar
02 ar

06 ar
12 ar

14 ar
24

time[s] 4.06 4.09 3.88 1.65 3.60

arc ar
27 ar

35 ar
37 ar

56 ar
67

time[s] 4.06 2.60 1.60 2.03 2.64

TABLE II

Execution time of left arc

alc al
02 al

07 al
08 al

12 al
14 al

23

time[s] 4.06 2.84 4.60 3.88 1.65 3.60

alc al
24 al

35 al
38 al

56 al
68 al

78

time[s] 3.60 2.60 1.60 1.60 2.60 4.21

{tr
sij , t

l
sij} and Te = {tr

eij , t
l
eij}. These transitions mean

start and completion of the actions ar
ij/al

ij . A part of
the Petri net is shown in Fig. 10.

Let an initial state (sr
7, sl

0) and a goal state (sr
0, sl

8).
Controlling loop starts at path planning to give an
optimal trace tr

s76 tl
s08 tr

e76 tr
s60 tl

e08 tr
e60. This path is

checked by feasibility check and collision check finds
a collision between pr

d60 and pl
d08 (Fig. 11), and the in-

hibitor arcs pr
d60 7→ tl

s08 and pl
d08 7→ tr

s60 are added to the
Petri net. Then an optimal path is searched again and
we get tr

s72 tl
s08 tr

e72 tr
s20 tl

e08 tr
e20, that is feasible. The

optimal path is illustrated in Fig. 12. Then the transi-
tions of the optimal trace is sent to modular state nets
one by one, and the simulation is completed successfully.
Captured screens in the simulation are shown in Fig. 13.
The graphical output is done by OpenHRP[5].

VII. Experiment

We also carried out an experiment for a humanoid
robot HOAP-1. The CPU of the host computer is Pen-
tium III 1GHz, the OS is RT-Linux. The control pro-

Fig. 11. Conflict

gram is written in C++ with STL. The host computer
controls the HOAP-1 directly through an USB interface.
The initial and goal state is given as the simulation, and
the same optimal path is derived. The robot was con-
trolled along the path. The results are shown in Fig. 14.

VIII. Conclusion

In this paper, we have proposed a supervisory control
system for motion planning of humanoid robots. The
proposed system is hierarchically structured into two
levels. The lower level controls and monitors the robots
using modular state nets. The upper level generates
an optimal sequence of actions for user’s requirements
using timed Petri nets. We have shown some numerical
simulations and some experimentations for a humanoid
robot HOAP-1.

In this research, only kinematic collision is detected
so far, so it is future research to consider dynamic con-
straint to avoid collapsing. One approach is to check
ZMP(zero moment point) of a composite trajectory.
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