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Abstract

This paper discusses the existence of limit cycles in a
class of hybrid dynamical systems (HDSs), and derives
a condition on system parameters for easily checking lo-
cal stability. In this paper, we focus on piecewise affine
(PWA) systems as a special class of HDSs. Assuming
some symmetry on PWA systems, we obtain a simpli-
fied existence condition and a stability condition of limit
cycles.

1. Introduction

Hybrid dynamical Systems (HDSs) are dynamical sys-
tems whose states consist of both continuous and discrete
variables. While their discrete state is constant, their
continuous state evolves according to a differential equa-
tion corresponding to the current discrete state. The
discrete state may change to another one, when the con-
tinuous state satisfies a certain condition. Since many
physical systems and engineering systems can be natu-
rally represented as HDSs, analysis and design of HDSs
are important.

Stability analysis for HDSs is generally very difficult
since the conventional Lyapunov stability analysis is no
more powerful. Recently, many approaches to stability
analysis based on discontinuous Lyapunov functions or
multiple ones have been developed [1, 2, 3, 4]. More-
over, it is a very difficult issue to compute limit cycles
analytically. Limit cycles are one of the most impor-
tant phenomena in nonlinear dynamical systems, and
applied in many engineering fields. Limit cycles in con-
tinuous differential equations are smooth in general. But
in applications such as generation of walking patterns
for humanoid robots, nonsmooth limit cycles are needed.
HDSs are useful for such limit cycles since change of the
discrete states causes nonsmoothness.

In earlier studies, for example, the existence and sta-
bility of limit cycles in switched server system [5, 6],

global asymptotical stability of limit cycles in relay feed-
back systems using extended Poincaré maps [7, 8] are
reported. In more general case, modeling each point of
trajectory on switching surface by discrete-time system,
it is possible to check the exponential convergence of
limit cycle by using discrete-time Lyapunov theory [9].
But in any case, it is still difficult to compute limit cycles,
because it explicitly depends on the time. In this paper,
we deal with hybrid dynamical systems whose continu-
ous states are governed by piecewise affine (PWA) sys-
tems with certain symmetric properties, and propose an
efficient method for computation of limit cycles. Fur-
thermore, we derive a condition for the local stability of
limit cycles which can be checked easily.

2. Piecewise Affine Systems

We consider the following PWA systems

ẋ = Aq(t)x + Bq(t),
q(t) ∈ Q ∪ idle (Q := {1, 2, . . . , M}), (1)

where x(t) ∈ R
n is the continuous state vector, q(t) ∈

Q = {1, 2, · · · , M} is the discrete state, Aq(t) ∈ R
n×n,

and Bq(t) ∈ R
n. In this paper, it is assumed that the

discrete transition follows idling. Hence, during the idle
time τid, the system is obeyed by ẋ = Aidx + Bid (id
represents idle). The hybrid space is given by H = R

n×
Q. An initial state is assumed to be chosen in a set of
possible initial state (x0, q0) ∈ H0 ⊂ H. The continuous
state x(t) evolves according to ẋ = Aq0x + Bq0 from the
given initial state. The discrete transition occurs when
x(·) reaches a switch set Sij , where Sij represents the
hypersurface on which change of the discrete state from
i to j occurs. It is typically given by a hyperplane

Sij = {x ∈ R
n |Cijx = dij}, i, j ∈ Q. (2)

Definition 1: A solution [x(t), q(t)] of (1) is said to be

well-defined if the following conditions hold:
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Figure 1: Cyclic change of discrete states.

(i) The solution is defined for all t ∈ [0,∞).

(ii) There exist a sequence {tn}∞n=0 such that t0 = 0,
tn+1 > tn, n = 0, 1, 2, . . . and lim

n→∞ tn = ∞.

{tn}∞n=0 is called the switching sequence of the solution
[x(t), q(t)].

Definition 2: A well-defined solution [x(t), q(t)] is said
to be a periodic trajectory if there exists a time T > 0
such that x(t + T ) = x(t), q(t + T ) = q(t) for all t ≥ 0

Definition 3: If a well-defined solution [x(t), q(t)] is an
isolated periodic trajectory, it said to be a limit cycle.

Without loss of generality, if the system has a limit cy-
cle, we can assume that the discrete state of limit cycle
evolves 1 → 2 → · · · k → 1 → 2 · · · as shown in Fig. 1.
Let x∗

i be the state of the limit cycle in the switch set Si

(we drop the subscript i+ 1 of Si,i+1). Since the consid-
ered limit cycle has k discrete changes per one cycle, (1)
is restricted as follows:

ẋ = Aix + Bi,
i ∈ I ∪ idle (I := {1, 2, . . . , k}). (3)

It is noted that for a discrete state i ∈ I, the continuous
state trajectory of PWA system (3) which starts at xi(tk)
is given by

xi(t) = eAi(t−tk)xi(tk) +
∫ t

tk

eAi(t−τ)Bidτ

= eAi(t−tk)
(
xi(tk) + A−1

i Bi

)
−A−1

i Bi, (4)

t ∈ [tk, tk+1].

3. Analysis of limit cycles

Assume that the PWA system (3) has a limit cycle,
and this limit cycle crosses k switching surfaces per one
cycle. To compute the limit cycle, by using (4), it is
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Figure 2: Trajectory of the limit cycle with idling.

sufficient to solve the following set of equations:


x∗
1 = Fid ◦ Fk ◦ Fid ◦ Fk−1 ◦ · · · ◦ Fid ◦ F1

x∗
2 = Fid ◦ F1 ◦ Fid ◦ Fk ◦ · · · ◦ Fid ◦ F2

...
x∗

k = Fid ◦ Fk−1 ◦ Fid ◦ Fk−2 ◦ · · · ◦ Fid ◦ Fk,

(5)

subject to Cix
∗
i+1 = di, i ∈ I where mapping Fi is given,

from (4), by

Case (i):Ai �= 0, i ∈ I ∪ idle

Fi(x∗
i ) = eAiτ

∗
i

(
x∗

i + A−1
i Bi

)
−A−1

i Bi. (6)

Case (ii):Ai = 0, i ∈ I ∪ idle

Fi(x∗
i ) = x∗

i + Biτ
∗
i . (7)

Here, τ∗
i denotes the duration where the discrete state i

is active (Fig. 2).

Assumption 1: The PWA system (3) satisfies the fol-
lowing symmetric property described, in terms of J ∈
R

n×n and r ∈ R (1 ≤ r ≤ k − 1):

Ai = Jk−rAi−1J
r, Bi = Jk−rBi−1,

Ci, = Ci−1J
r, di = d, i ∈ I,

Aid = Jk−rAidJ
r, Bid = Jk−rBid.

(8)

Let C : R+ → R
n be a periodic solution of system (3)

with period T , and X∗ be the closed orbit given by the
image set C(t), that is,

X∗ = {x ∈ R
n|x = C(t), 0 ≤ t ≤ T }. (9)

Considering the idle time, the limit cycle starting at x∗
1 ∈

Sk ∩ X∗ satisfies C(τid + τ∗
1 ) = x∗

2 ∈ S1 ∩ X∗. Similarly,
C(τid + τ∗

1 + τid + τ∗
2 ) = x∗

3 ∈ S2 ∩X∗, and so on. In the
last discrete state k, the trajectory satisfies C(

∑k
i=1(τid+

τ∗
i )) = x∗

k+1 = x∗
1 ∈ Sk∩X∗. Note that

∑k
i=1(τid+τ∗

i ) =
T .



Under Assumption 1, we have the following theorem
which describes the relation between the state x∗

i and
the duration τ∗

i .

Theorem 1: PWA system (3) has a limit cycle X∗

satisfying x∗
i+1 = Jk−rx∗

i if and only if all durations of
each discrete state equal i.e., τ∗

0 = τ∗
1 = · · · = τ∗

k = τ∗.
Proof : See the Appendix.

By applying Theorem 1, the computation of limit cy-
cles becomes easy as compared with solving (5). If
x∗

i ∈ Si−1 ∩ X∗, then x∗
i+1 satisfies x∗

i+1 = Jk−rx∗
i , that

is,

Jk−rx∗
i = eAiτ

∗(
x∗

i + Bidτid + A−1
i Bi

)
−A−1

i Bi. (10)

Here, we assume that a trajectory of the system is gener-
ated by ẋ = Bid when the discrete state is idle. Using
(10), x∗

i is obtained by

x∗
i =

(
Jk−r− eAiτ

∗)−1(
eAiτ

∗− I
)
A−1

i Bi + eAiτ
∗
Bidτid.

(11)

Furthermore, since x∗
i is in the switch set Si−1 and sat-

isfies Ci−1x
∗
i = di−1, τ∗ is obtained by solving the equa-

tion

Ci−1

[(
Jk−r− eAiτ

∗)−1(
eAiτ

∗− I
)
A−1

i Bi

+ eAiτ
∗
Bidτid

]
−d = 0. (12)

It need not solve both (11) and (12) for each discrete
state. If only one x∗

i is obtained, it is possible to com-
pute other x∗

i recursively by using x∗
i+1 = Jk−rx∗

i . From
Theorem 1, the each duration τ∗

i (i = 1, 2, . . . , k) equals.

4. Stability of Limit Cycles

In this section, we present a simplified criterion for
local stability of limit cycles. Limit cycles in HDSs are
characterized by the state x∗

i belonging to the switch set
Si−1. it is possible to check the local stability of limit
cycles by using the Poincaré map from a small neigh-
borhood of x∗

i in Si−1 to the state when the trajectory
returns to Si−1. If all eigenvalues of the Jacobian matrix
of the Poincaré map are inside the unit disk, the limit
cycle is locally asymptotically stable.

Assume that the PWA system (3) has a limit cycle X∗.
We consider a map from x∗

i + ∆ix
∗
i to x∗

i+1 + ∆i+1x
∗
i+1

after τ∗+∆it passed where ∆i is chosen so that x∗
i +∆ix

∗
i

is in Si−1. It is given (similar to [8]) by ∆i+1x
∗
i+1 =

Wi∆ix
∗
i + O(∆2

0)

Wi :=

{
I −

(
Aix

∗
i+1 + Bi

)
Ci

Ci

(
Aix∗

i+1 + Bi

)
}

eAiτ
∗
. (13)

If all eigenvalues of W = W1W2W3 · · ·Wk are inside the
unit disk, the limit cycle C is locally asymptotically sta-
ble. Moreover in the PWA systems (3), Wi can be trans-
formed as follows

Wi =

{
I −

(
Aix

∗
i+1 + Bi

)
Ci

Ci

(
Aix∗

i+1 + Bi

)
}

eAiτ
∗

=Jk−r

{
I −

(
Ai−1x

∗
i + Bi−1

)
Ci−1

Ci−1

(
Ai−1x∗

i + Bi−1

)
}

eAi−1τ∗
Jr

=Jk−rWi−1J
r. (14)

In the end, we get the Jacobian of the map W :

W =WkWk−1 . . . W2W1

=J (k−r)(k−1)W1J
rk − 1 . . . Jk−rW1J

r W1

=Jk(k−r−1)+rW1

(
JrW1

)k−1=
(
JrW1

)k
. (15)

Thus, We have the following Theorem.

Theorem 2: Consider the PWA systems (3). Assume
there exists a limit cycle. If all eigenvalues of JrW1 are
inside the unit disk, the limit cycle is locally asymptoti-
cally stable

5. Illustrative Example

Consider the following piecewise affine system.

J =
[−0.5 0.866
0.866 0.5

]
, (J2 = I),

A1 =
[−1.5 −5

3.5 −2

]
, B1 =

[−1
1

]
,

A2 =
[−1.225 3.659
−4.842 −2.275

]
, B2 =

[
1.366
−0.366

]
,

Aid = 0, Bid =
[

10
17.320

]
,

S1 =
{
x ∈ R

2
∣∣∣ [ −3 −1

]
x = 0

}
,

S2 =
{

x ∈ R
2
∣∣∣ [ 0.634 −3.098

]
x = 0

}
.

Let the idle time be τid = 0.1. Solving (11), (12) numer-
ically and considering x∗

i+1 = Jk−1x∗
i , we get

τ∗ = 0.263, x∗
1 =

[
2.247
0.460

]
, x∗

2 =
[ −0.725

2.176

]
.

We can also check the local stability of this limit cycle
by examining eigenvalues of JW1.

JW1 =
[

0.258 0.544
0.053 0.111

]
, λ(JW1) = 0, 0.369.

Since both of the eigenvalues are inside the unit disk,
from Theorem 2 this limit cycle is locally asymptotically
stable (Fig. 3).
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Figure 3: A simulated trajectory

6. Conclusions

Motivated by difficulties to compute limit cycles in
HDSs, we have shown that the computation of the limit
cycles are relaxed and to check the local stability be-
comes easy in PWA systems with certain symmetric
properties. The results were applied to an example, but
the constraints which system require is still strong.
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Appendix: Proof of Theorem 1

In this proof, for simplicity, we consider only the case in this
proof that the trajectory of system is given by ẋ = Bid (i.e.,
Aid = 0) during the idle time τid. Note that Theorem 1 can
be proven similarly in case that Aid �= 0 by referring to (6).

Sufficiency : Assume all durations are same, that is, τ∗
0 =

τ∗
1 = · · · = τ∗

k = τ∗. Considering a state at time τ∗ which
starts at xi(0) ∈ Si−1,i, we get

xi(τ
∗) = eAiτ∗�

xi(0) + Bidτid + A−1
i Bi

�
−A−1

i Bi

= Jr
�

eAi+1τ∗�
Jk−rxi(0) + Bidτid + A−1

i+1Bi+1

�

− A−1
i+1Bi+1

�
.

Let x(t)
��
x(0)

be a state at time t which starts from x(0), that

is

xi(τ
∗)
��
xi(0)

= Jrxi+1(τ
∗)
��
xi+1(0)=Jk−rxi(0)

.

According to the sequence of discrete states, we get

xi(τ
∗)
��
xi(0)

= Jrxi+1(τ
∗)
��
xi+1(0)=Jk−rxi(0)

= · · ·
· · · = Jkrxi(τ

∗)
��
xi(0)=Jk(k−r)xi(0)

= xi(τ
∗)
��
xi(0)

.

Necessity: Assume that PWA system (3) with condition
(8) has a limit cycle X∗ satisfying x∗

i+1 = Jk−rx∗
i . The state

x∗
i+1 ∈ Si reaches the next switch set Si+1 after τ∗

i+1 passed,
that is,

Ci+1

�
eAi+1τ∗

i+1
�
x∗

i+1 + Bidτid + A−1
i+1Bi+1

�

− A−1
i+1Bi+1

�
= di+1 = d.

Recall that x∗
i+1 = Jk−rx∗

i . Thus,

CiJ
r
�
Jk−reAitJr

�
Jk−r

�
x∗

i + Bidτid
�

+ Jk−rA−1
i Bi

�

− Jk−rA−1
i Bi

�
= d,

⇔ Ci

�
eAit

�
x∗

i + Bidτid + A−1
i Bi

�
− A−1

i Bi

�
= d = di.

Finally, finding τ∗
i+1 is equivalent to finding τ∗

i . �
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