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Abstract

This paper is concerned with high level control of
robot systems. We abstract the robot system as timed
Petri net and give a high level controller which consists
of an LLP supervisor. We give its simple application
to a mobile robot system.

1 Introduction

Recently, supervisory control theory has been pro-
posed for controlling logical discrete events systems
by Ramadge and Wonham[1], and its applications
to robotics have been studied[2]–[4]. In supervi-
sory control, behaviors of controlled systems are de-
scribed by formal languages or automata, and as-
sumed to be time-invariant. But in robot systems,
unexpected events may occur, and interactions with
environments are time-varying. So, limited lookahead
policies(LLPs)[5] are very useful strategies for robot
systems.
In this paper, we consider searching problems in mo-
bile robots. Petri nets are used as unified models
to represent maps, procedures of tasks, the qualita-
tive state of the robot, and so on. Since a model of
the interactions with environments changes dynami-
cally according to what the mobile robot is conscious
of. We have described the consciousness by stepwise
refinement[6] of Petri nets in [7]. We introduce timed
Petri nets[8], which is also colored Petri net[9]. The
tokens have color to shows which transitions fired to
put them to the places, and the frozen times of the
tokens depend on the color. We can exploit the rule
to get more proper supervisory controllers.
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2 Petri Nets

2.1 Mathematical Definition

We give a definition of timed colored Petri nets in this
paper. In order to simplify the notation, we assume
the Petri net is safe, namely, the number of tokens
in one place is guaranteed to be either zero or one.
We shall use B to denote the set {0, 1} and < the
set of all real numbers. Let P be a set of places, T
a set of transitions, C a set of colors. We assume
that a color of a token depends on a transition whose
firing put the token in a place. carries the token and
define F : T → C is a color function. The marking
m : P → B × C × < is denoted by a triple m =
(mn,mc,mt), where mn : P → B is the number of
tokens in a place, mc : P → C is a color of the token
in the place, mt : P → < is the time when the token
is put at the place. If there are no tokens in a place,
mc and mt are undefined for the place. The set of
all markings is denoted by M . The connection A :
(P × T ) ∪ (T × P ) → B describes input and output
arcs of a transition. We introduce a delay function
θ : C × P × T → <+, where <+ denotes the set of all
non-negative real numbers. Then the timed colored
Petri net is defined as G = (C, P, T, A, F, θ, m0),
where m0 ∈ M is an initial marking.
Let m ∈ M and t ∈ T . A transition t is said to be
enabled at time τ if

mn(p)φ(τ−mt(p)−θ(mc(p), p, t)) ≥ A(p, t) (∀p ∈ P )
(1)

where

φ(x) =
{

0 (x < 0)
1 (x ≥ 0) (2)

and we write m[t, τ〉 . If the enabled transition t fires,
the marking changes to m′ = (m′

n,m′
c,m

′
t) given by

m′
n(p) = mn(p)−A(p, t) + A(t, p) (3)

m′
c(p) =

{
F (t) (A(t, p) > A(p, t))
mc(p) (A(t, p) = A(p, t)) (4)
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m′
t(p) =

{
τ (A(t, p) > A(p, t))

mt(p) (A(t, p) = A(p, t)) (5)

and we write m[t, τ〉m′.
Equation (1) shows that the token in place p is not
available for firing of a transition t until θ(mc(p), p, t)
time passes from its entering time mt(p), and the time
when the token becomes available again depends on
the color of the token.
Equation (4) implies that the color of the token is
assigned by the transition, namely, if the color of the
token m0c(p) = a, the transition tp such that F (tp) =
a fired. So the maps θ and F can model how long it
takes from firing of tp to that of t through p.
If A(t, p) = A(p, t) = 1, there exists a pair of arcs
t → p and p → t that is equivalent to a permission
arc from p to t. Since the token in p doesn’t move by
firing of t, we don’t update mc and mt in this case.
When A(t, p) < A(p, t), m′

n(p) becomes 0 and m′
c(p)

and m′
t(p) are undefined.

When mn(p) ≥ A(p, t) (∀p ∈ P ), there exists a τN ≥
0 such that m[t, τN 〉. Then we write m[t〉. Assume
mp[tp, τp〉m0 , then τN ≥ τp is given by

τN = max
A(p,t)>0

{mt(p) + θ(mc(p), p, t)} . (6)

2.2 Composing Petri Nets

Let G1 = (C1, P1, T1, A1, F1, θ1, m10) and G2 =
(C2, P2, T2, A2, F2, θ2, m20) be Petri nets where
P1∩P2 = ∅ and T1∩T2 6= ∅. We can get the composed
Petri net as follows. Let C12 = C1∪C2, P12 = P1∪P2,
and T12 = T1 ∪ T2. Then we define a marking m0 :
P12 → B × C12 ×< such that

m120(p) =
{

m10(p) (p ∈ P1)
m20(p) (p ∈ P2)

. (7)

We also define A12 : (P12 × T12) ∪ (T12 × P12) → B
such that

A12(p, t) =





A1(p, t) (p ∈ P1 ∧ t ∈ T1)
A2(p, t) (p ∈ P2 ∧ t ∈ T2)

0 (otherwise)
(8)

and

A12(t, p) =





A1(t, p) (p ∈ P1 ∧ t ∈ T1)
A2(t, p) (p ∈ P2 ∧ t ∈ T2)

0 (otherwise)
. (9)

Now we can get a composition G1 + G2 =
(C12, P12, T12, A12, F12, θ12, m120) where

t2
t1

t2
t4t3

p3

p4

G1:

t1 p2p1G:

Figure 1: Petri nets
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Figure 2: Refinement of place p2

θ12(c, p, t) =





θ1(c, p, t) (c ∈ C1 ∧ p ∈ P1 ∧ t ∈ T1)
θ2(c, p, t) (c ∈ C2 ∧ p ∈ P2 ∧ t ∈ T2)

0 (otherwise)

and

F12(p) =
{

F1(p) (p ∈ P1)
F2(p) (p ∈ P2)

. (10)

Let ta ∈ T1 ∩ T2. We note that m120[ta〉 if and only if
m10[ta〉 and m20[ta〉.
We give a simple example of composing two Petri nets.
There are two Petri nets G and G1 in Fig.1. Graphical
representations of Petri nets are as follows: places,
transitions, connections, and tokens are represented
by circles “©”, bars “|”, arcs “→”, and bullets “•”,
respectively. The arcs connected to a transition show
how tokens move when the transition fires.
Then the composed Petri nets G + G1 can be repre-
sented as Fig.2. Figure 2 shows that adding G1 to G
makes the place p2 refined. On the other hand, remov-
ing G1 from G + G1 is called reduction. We note that
transitions t1, t2 ∈ T ∩ T1 are only enabled in G + G1

when they are enabled in G and in G1 simultaneously.
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G

S

t∈Tγ∈Γ

Figure 3: Supervisor

For valid refinement, It is assumed that
∑

p∈P1

m10n(p) = m0n(p2) . (11)

3 Supervisory Control

3.1 Supervisor for DES

Supervisory control theory has been proposed for log-
ical control of discrete event systems[1]. We assume
that transitions are classified into controllable and un-
controllable transitions: firing of controllable tran-
sitions are prohibited by external controllers called
supervisors while uncontrollable transitions can fire
whenever they are enabled. Let Tc ⊂ T be a set
of controllable transitions. We introduce a mapping
γ : Tc → {0, 1} called a control pattern. Each control-
lable transition t can fire if it is enabled and γ(t) = 1.
It is often said that t is control enabled if γ(t) = 1.
For a discrete event system G, a language generated
by G denotes L(G) ∈ T ∗, where T ∗ is the Kleene clo-
sure of T . A logical controller called a supervisor S
is formally defined by S : L(G) → Γ. A supervisor
selects a control pattern according to firing of tran-
sitions so that every trace(a sequence of transitions)
in the controlled discrete event system is restricted in
a set of desirable traces. Shown in Fig. 3 is a dia-
gram of the discrete event system G controlled by the
supervisor S.
Ramadge and Wonham have proposed off-line design
of a supervisor where a reachability graph of G is used.
But the off-line design is not suitable for a large reach-
able set and/or time varying systems.

3.2 LLP Supervisor for Timed Petri
Nets

Since we will apply supervisory control in robot mo-
tion planning under time-varying environments, we
adopt another design approach called the limited

lookahead policy(LLP)[5]. An LLP supervisor for
timed Petri net predicts all possible traces with lim-
ited length and calculate minimum times to fire all
transitions in the traces sequentially. These traces
form a tree and each node has a time to reach them.
Then the LLP supervisor evaluates each branch and
finds the optimal traces. The control pattern given by
the supervisor consists of the controllable transitions
which are the first transitions in the optimal traces.
When the supervisor observes firing of a transition, it
updates the tree and reselects a control pattern.
An LLP supervisor consists of four parts: generating
a prediction tree, detecting illegal regions, calculating
the supremal controllable sub language, and selecting
the optimal command.
1) If the event detector observes the firing of a tran-
sition, the HLC makes the transition fire on the Petri
nets model, and predicts the behavior of the composed
Petri net N steps ahead where one step means the fir-
ing of one transition. This is the function block fN

L(G)

in Fig. 4 and it results an N -tree. Each node in the
tree has the marking and the minimum time to reach
there.
2) The HLC determines which traces in the N -tree are
illegal with the policy. This is the function block of
the fN

K .
3) The HLC calculates the supremal controllable sub-
language. It trims all nodes in the illegal regions and
if there is an uncontrollable transitions from a node
into an illegal region, the node is also trimmed. This
is the function block of the fN

↑ .
4) The HLC chooses the optimal trace with a cost
function. If the first transition in the trace is control-
lable, the transition is made to be enabled. This is the
function block of the fN

u .

4 Application to a Mobile
Robot

4.1 Robot System

In this paper, we propose a high level controller of a
robot system. The robot system is supposed to have
low level controllers, which are assumed to have corre-
sponding sub tasks and to control the actuators of the
robot appropriately in order to achieve the sub tasks.
Figure 4 shows the block diagram of the system con-
sisting of controllers and a controlled robot system.
The proposed controller consists of an event detec-
tor, a high level controller, a low level controller, and
Petri nets which model information on the robot sys-
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Figure 4: System

tem such as maps, qualitative states of robots, and so
on. The high level controller (HLC) is based on an
LLP supervisor. In order to design the HLC, we must
model the behavior of the robot system and give poli-
cies to detect the illegal region and to evaluate a trace
in the prediction tree.

4.2 Mobile Robot

The robot system is also supposed to have an event
detector which uses sensor information and detects fir-
ing of events such as the completion/failure of a sub
task or changing of discrete states of the system.
Our aim in this paper is to give a high level controller
which observes traces and selects an appropriate con-
trollable event to complete a task successfully.
We show an application to a mobile robot. The robot
moves in a building depicted in Fig. 5. There are an
entrance, an exit, rooms 1 to 3, hallways A and B. It
is supposed that the robot has a map of the building
in advance and can get where it is on the map with
its vision sensors.
A target object is supposed to be in the building, but
the robot doesn’t know where in the building the ob-
ject is. The task for the robot is to enter the building,
to search it in the building, and to exit from the build-
ing after finding it.

4.3 Petri Nets Model

We model the mobile robot system as a Petri net. The
Petri net consists of four sub Petri nets. The first
Petri net GM = (CM , PM , TM , AM , FM , θM , mM0)

A

B

room 1 room 2 room 3

Entrance

Exit

Figure 5: Map of a building

Exit

Entrance

pB

pA

p1 p2 p3

tA1

t1A

t12

t21
t1B

tB1

tS

tE

Figure 6: Map of the building

shows where the robot is (Fig. 6). We also let CM =
TM and F (t) = t. The delay function θM has geomet-
ric information of the room.
The places mean the rooms, the hallways, the en-
trance, and the exit. One token moves from a place
to another, to show where the robot is.
Geometric information is modeled by θM as Fig. 7.
The last Petri net GT shows the current task. There
are two places pTs and pTe. The place pTs means the
robot has not found the object yet and is now search-
ing, while the other place PTe means the robot has
found the object and is going to the exit. The transi-
tion tf fires when the robot finds the object (Fig. 8).

The set of all controllable transitions is TM , while TT

is the set of the uncontrollable transitions. Thus the
HLC selects an optimal transition in TM that is exe-
cuted by a low level controller.
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A

4.5

3.2

3.2

p1

tA1

t1A

t12

t21

t1B

tB1B

room 1

room 2

θ(t21,p1,t1A)=3.2
θ(tB1,p1,t1A)=4.5

θ(tA1,p1,t1B)=4.5

θ(A1,p1,t12)=3.2

θ(t21,p1,t1B)=3.2

θ(B1,p1,t12)=3.2

Figure 7: Delay in the room

pTs pTe
tf

GT:

Figure 8: Task

4.4 Getting Optimal Transition

Before giving the evaluative function, we add some
Petri nets which shows when the transition tf can
occurs. The transition tf shows the robot finds the
object and is the sub goal to achieve the task.
When the robot enters the room 1 for the first time,
it looks around the room in order to find the target
object. If there is the object, the transition tf1 fires.
But if there is not the object, the transition tn1 fires.
Both transitions are uncontrollable. This is given by
Gf1 shown in Fig. 9, where a pair of input and output
arcs is represented by permission arc “—•”.
By Go, we indicate that tfi (i = 1, 2, 3) must fire be-
fore tf fires. We also indicate the tE never fire before
tf fire. Before tf fires, we let psf sub goal state and
terminate the tree there. Since we cannot make tfi

fire, a purpose of the high level controller is to find the
trace along which the transition tfi may fire. Thus the
trace which has many tni-s should be evaluated much
and the shorter is the time to fire, the more the evalu-
ation. For example, trace σ = tA1tn1t12tn2 in Fig. 11
has the opportunity for firing of tf1 and tf2. With the
current marking and θ, we can also calculate the min-
imum times τf1 and τf2 for tf1 and tf2 to be enabled,
respectively. Then we give a cost function of σ as

J(σ) =
∑

t∈{tfi,tni}
exp(−λfσ(t)) , (12)

where λ is proper positive discounted rate and fσ(t)
is the shortest time for t to fire. If there is no t in
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Figure 9: Gf1

tf1 tf2 tf3

tf tE

Go:

psf

Figure 10: Go

σ, fσ(t) = ∞. The HLC searches for the optimal
traces σM by (12) in the prediction tree, and if the
first transition of σM is controllable, the transition is
set to be enabled. If there are more than one optimal
transition, choose one at random.

4.5 Numerical Simulation

We give a result of a numerical simulation. Let the
discounted rate α = 0.1, the length of prediction tree
N = 5. Suppose that the target object is in the room
3. To simulate the case that the given map is not
correct, when the robot enters the room 2 or 3, the
transitions t23 and t32 are removed from GM to model
the door between the rooms is not available.
We show a prediction tree at the initial state (Fig. 12).
The robot first entered the room 1 because the trace
tAtA1tn1t12tf2 was the shortest to fire and contained
many rooms that had possibility to find the object.
But the robot could not find the object along the trace,
and found the rooms 2 and 3 were not connected di-
rectly. The robot selected the hallway A because the
path was the shortest. After finding the object, it went
to the exit. The whole trajectory is shown in Fig. 13.
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t12

t1A

tn1

tf1

tA1 tn2

tf2

t1B

sub goal sub goal

continued

Figure 11: Evaluation of trace
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1.28
0.41
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0.41

tb1
tb3

tf2
tn2

0.41
0.76

0.74

t1b

ta3

t1a

ta1

tf1

tsa

start

ta1
ta3

tn1

tn3

tf3

t12

t3b

t3a

t32

ta1
ta3

tb1

tb3

tf2

tn2

0.74

0.76

Figure 12: Tree at the initial state

5 Conclusion

In this paper, we modeled robot systems by Petri nets,
and proposed a high level controller based on an LLP
supervisor. We considered a simple example of a mo-
bile robot which searches for an object in a building.
We gave several sub tasks to the robot and proposed
some policies for LLP supervisory control.
We proposed to use timed Petri net which can model
the minimum time to execute the sequence of the tran-
sition. We gave an example to model geometrically
information. This method is also useful with stepwise
refinement of the Petri net since we can distinguish
the time cost of the transition in a refined place and
the one among the refined places. We gave an exam-
ple of updating the Petri net model on line, and our
method was shown to be effective in such cases.
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B
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found the door 
was closed

got the object

Figure 13: Trajectory
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