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Abstract

This paper is concerned with high level control of
robot systems. We abstract the robot system as a
discrete event system and give a high level controller
which consists of an LLP supervisor and a Petri nets
model. We give its simple application to a mobile
robot system.

1 Introduction

Recently, supervisory control theory has been pro-
posed for controlling logical discrete events systems
by Ramadge and Wonham[1], and its applications
to robotics have been studied[2]–[6]. In supervi-
sory control, behaviors of controlled systems are de-
scribed by formal languages or automata, and as-
sumed to be time-invariant. But in robot systems,
unexpected events may occur, and interactions with
environments are time-varying. So, limited lookahead
policies(LLPs)[7] are very useful strategies for robot
systems.
In this paper, we consider searching problems in mo-
bile robots. Petri nets are used as unified models to
represent maps, procedures of tasks, the qualitative
state of the robot, and so on. Since a model of the in-
teractions with environments changes dynamically ac-
cording to what the mobile robot is conscious of. We
describe the consciousness by stepwise refinement[8] of
Petri nets.

2 Petri Nets

2.1 Mathematical Definition

We review a definition of Petri nets. Let P be a set
of places and T a set of transitions. The marking

Proc. of the 2000 IEEE International Conference on Sys-
tems, Man & Cybernetics, 3015/3020 (2000)

m : P → N is the number of tokens in a place, where
N denotes the set of all nonnegative integers, and M =
{m | m : P → N} is a set of markings. The connection
A : (P ×T )∪ (T ×P ) → N describes input and output
arcs of a transition. Then the Petri net is defined as
G = {P, T, A, m0}, where m0 ∈ M is an initial
marking.
Graphical representations of Petri nets are as follows:
places, transitions, connections, and tokens are repre-
sented by circles “©”, bars “|”, arcs “→”, and bullets
“•”, respectively. The arcs connected to a transition
show how many tokens move when the transition fires.
Let m ∈ M and t ∈ T . If m(p) ≥ A(p, t) (∀p ∈ P ),
then the transition t is said to be enabled and we write
m(t > . If the enabled transition t fires, the marking
changes to m′ where

m′(p) = m(p)−A(p, t) + A(t, p) (∀p ∈ P ) , (1)

and we write m(t > m′ .

2.2 Composing Petri Nets

Let G1 = {P1, T1, A1, m10} and G2 =
{P2, T2, A2, m20} be Petri nets where P1 ∩ P2 = ∅
and T1 ∩ T2 6= ∅. We can get the composed Petri net
as follows.
Let P = P1∪P2 and T = T1∪T2. To make the notation
brief, we extend the domain of a marking naturally to
get m10(p2) = 0 (∀p2 ∈ P2) and m20(p1) = 0 (∀p1 ∈
P1). Then we define a marking m0 : P → N such that

m0(p) = m10(p) + m20(p) (∀p ∈ P ) . (2)

We also define A : (P × T ) ∪ (T × P ) → N such that

A(p, t) = A1(p, t) + A2(p, t) (∀p ∈ P, ∀t ∈ T ) (3)

and

A(t, p) = A1(t, p) + A2(t, p) (∀p ∈ P, ∀t ∈ T ) (4)

with similar extensions of the domains. We express
above relations as m0 = m10 + m20 and A = A1 + A2.
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Figure 1: Petri nets
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Figure 2: Refinement of place p2

Now we can get a composition G1+G2 = {P1∪P2, T1∪
T2, A1 + A2, m10 + m20}.
We give a simple example of step refinement of a place.
There are two Petri nets G and G1 in Fig.1. Then the
composed Petri nets G + G1 can be represented as
Fig.2. Figure 2 shows that adding G1 to G makes the
place p2 refined. On the other hand, removing G1 from
G + G1 is called reduction. We note that transitions
t1, t2 ∈ T ∩ T1 are only enabled in G + G1 when they
are enabled in G and in G1 simultaneously. For valid
refinement, It is assumed that

∑

p∈P1

m10(p) = m0(p2) . (5)

3 Supervisory Control

Supervisory control theory has been proposed for log-
ical control of discrete event systems[1]. We assume
that transitions are classified into controllable and un-
controllable transitions: firing of controllable tran-
sitions are prohibited by external controllers called
supervisors while uncontrollable transitions can fire
whenever they are enabled. Let Tc ⊂ T be a set
of controllable transitions. We introduce a mapping

�

� ∈�γ∈Γ

Figure 3: Supervisor

γ : Tc → {0, 1} called a control pattern. Each control-
lable transition t can fire if it is enabled and γ(t) = 1.
It is often said that t is control enabled if γ(t) = 1.
For a Petri net G, a language generated by G denotes
L(G) ∈ T ∗, where T ∗ is the Kleene closure of T . A
logical controller called a supervisor S is formally de-
fined by S : L(G) → Γ. A supervisor selects a control
pattern according to firing of transitions so that every
trace(a sequence of transitions) in the controlled Petri
net is restricted in a set of desirable traces. Shown in
Fig. 3 is a diagram of the Petri net G controlled by
the supervisor S.
Ramadge and Wonham have proposed off-line design
of a supervisor where a reachability graph of G is
used. But the off-line design is not suitable for a large
reachable set and/or time varying systems. Since we
will apply supervisory control in robot motion plan-
ning under time-varying environments, we adopt an-
other design approach called the limited lookahead
policy(LLP). An LLP supervisor predicts all possible
traces from the current state, which forms a tree, and
selects a control pattern. When it observes firing of a
transition, it updates the tree and reselects a control
pattern.

4 Controlled Systems

In this section, we propose a high level controller using
an LLP supervisor with Petri net based modeling.

4.1 Robot System

In this paper, we propose a high level controller of a
robot system. The robot system is supposed to have
low level controllers, which are assumed to have corre-
sponding sub tasks and to control the actuators of the
robot appropriately in order to achieve the sub tasks.
The robot system is also supposed to have an event
detector which uses the sensor information and detects
firing of events such as the completion/failure of a sub
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Figure 4: System

task or changing of discrete state of the system.
Our aim in this paper is to give a high level controller
which observes the trace and selects an appropriate
controllable event to complete a task successfully.

4.2 High Level Controller

Figure 4 shows the block diagram of the system con-
sists of controllers and a controlled robot system. The
proposed controller consists of an event detector, a
high level controller, a low level controller, and Petri
nets which model information on the robot system
such as maps, qualitative states of robots, and so on.
The high level controller (HLC) based on an LLP su-
pervisor consists of four parts: generating a prediction
tree, detecting illegal regions, calculating the supremal
controllable sub language, and selecting the optimal
command. The detail procedure in the HLC is a fol-
lows:
1) If the event detector observes the firing of a tran-
sition, the HLC makes the transition fire on the Petri
nets model, and predicts the behavior of the composed
Petri net N steps ahead where one step means the fir-
ing of one transition. This is the function block fN

L(G)

in Fig. 4 and it results an N -tree.
2) The HLC determines which traces in the N -tree are
illegal with the policy. This is the function block of
the fN

K .
3) The HLC calculates the supremal controllable sub-
language. It trims all nodes in the illegal regions and
if there is an uncontrollable transitions from a node
into an illegal region, the node is also trimmed. This
is the function block of the fN

↑ .
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Figure 5: Map of a building

4) The HLC chooses the optimal trace with a cost
function. If the first transition in the trace is control-
lable, the transition is made to be enabled. This is the
function block of the fN

u .
In order to design the HLC, we must model the behav-
ior of the robot system and give policies to detect the
illegal region and to evaluate a trace in the prediction
tree. We give an example in the next section to show
how to design the Petri nets model and the policies.

5 Application to a Mobile
Robot

We show an application to a mobile robot. The robot
moves in a building depicted in Fig. 5. There are an
entrance, an exit, rooms 1 to 4, hallways A to C, traffic
signals α and β in the building. When the signal α is
green and β is red, if the robot is in hallway A or C,
it can go to any hallways, but if it is in hallway B, it
cannot go to any other hallways, and vice versa. The
robot has vision sensors and is supposed to be able
to see the traffic signals. It is also supposed that the
robot has a map of the building in advance and can
get where it is on the map with its vision sensors.
An object is supposed to be in the building, but the
robot doesn’t know where in the building the object
is. The task for the robot is to enter the building, to
search an object in the building, and to exit from the
building after finding the object.
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Figure 6: Map of the building
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Figure 7: Maps of the rooms

5.1 Petri Nets Model

We model the mobile robot system as a Petri net.
The Petri net consists of four sub Petri nets. The
first Petri net GM = {PM , TM , AM , mM0} shows
where the robot is (Fig. 6). The places mean the
rooms, the hallways, the entrance and the exit. One
token moves from a place to another, to show where
the robot is. The place pRi (i = 1, 2, 3, 4) means
the room i and is refined by adding Petri nets Gri

= {Pri, Tri, Ari, mri0} shown in Fig. 7. Let
PR = {pRi}, Pr = ∪iPri, Tr = ∪iTri, Ar =

∑
i Ari.

Stepwise refinements are done when the robot enters a
room. Suppose the event detector observes the firing
of the transition t ∈ TM . If there is a place p ∈ PR

such that AM (t, p) > 0, the place p is refined while,
if there is a place p ∈ PR such that AM (p, t) > 0,
the place p is reduced. With these stepwise refine-
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Figure 8: Signal Information
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Figure 9: Task selection

ments, we can concentrate on the planning in the cur-
rent room, and we can make a rough plan after ex-
iting the room. Thus limited lookahead calculations
become efficient.
The second Petri net GS shows the information of the
traffic signals. There are three places pSH , pSV and
pSN . The place pSH means that the signal α is green
and β is red, while the place pSV means that the signal
α is red and the signal β is green. The place pSN

means that the robot is not in the hallway and cannot
watch the traffic signals (Fig. 8). There are permission
arcs which are pairs of both input and output arcs
from pSV and pSH to transitions in TM in order to
model the green signal.
The third Petri net GW shows whether the robot is
moving or stopping. The robot is allowed to wait for
the traffic signals to change, and the transition tw fires
when the robot starts waiting (Fig. 9).
The last Petri net GT shows the current task. There
are two places pTs and pTe. The place pTs means the
robot has not found the object yet and is now search-
ing, while the other place PTe means the robot has
found the object and is going to the exit. The transi-
tion tf fires when the robot finds the object (Fig. 9).
The set of all controllable transitions is TM ∪Tr ∪TW ,
while {t | t ∈ TS ∪ TT , t 6∈ TM} is the set of the
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uncontrollable transitions. Thus the HLC selects a
optimal transitions in TM ∪ Tr ∪ TW that is executed
by a low level controller.

5.2 Illegal Regions

When a room turns out to be a dead end, the robot
need not enter the room again to find the object. Thus
the HLC should give an illegal region to prevent the
robot from entering the room again.
In order to detect a dead end, we prepare a map E0 :
Pr → N. We give initial values E0(p) = 0 (∀p ∈
Pr) in advance, and update the value while the robot
is moving. Suppose the event detector observes the
firing of a transition ta ∈ Tr. If there is a place pa ∈
Pr such that Ar(pa, ta) > 0, we define a set P̃a =
{p | p ∈ Pr, t ∈ Tr \{ta}, Ar(pa, t) > 0, Ar(t, p) > 0}.
Then we update the value E0(pa) = 1 when P̃a = ∅ or
E0(p) = 1 (∀p ∈ P̃a). We define

E0R : PR → N : pRi 7→ min
p∈Pri

E0(p) (6)

and an illegal region {m | m ∈ M, p ∈ Pr, m(p) >
0, E0(p) = 1} ∪ {m | m ∈ M, p ∈ PR, m(p) >
0, E0R(p) = 1}.

5.3 Optimal Transition

We evaluate a trace σ = ti1ti2 · · · tin in order to find
the optimal transition. Let σ̄k = ti1 · · · tik

(1 ≤ k ≤ n)
be a prefix of σ and m the current marking. In order
to calculate the possibility of finding the object, we
define a map E1 : Pr → <, where < is the set of all real
numbers. We give initial values E1(p) = 1 (∀p ∈ Pr)
in advance, and update the value while the robot is
moving. When the event detector observes the firing
of a transition tb ∈ Tr, if for each place pb ∈ Pr such
that Ar(pb, tb) > 0, we update the value E1(pb) = 0.
This implies that the possibility of the room which the
robot has entered becomes zero.
If there is an integer k such that m(σ̄k > m′ and
m′(p) > 0, we define fσ(p) = min{k | m(σ̄k >
m′, m′(p) > 0}, otherwise we define fσ(p) = ∞. As
an exception, we define fσ(p) = ∞ if the place p is
refined. We give a design parameter 0 < α < 1, which
is called a discount rate. Then we evaluate the possi-
bility of finding the object along σ as

J1(σ) =
∑

p∈Pr

E1(p)αfσ(p)−1 +
∑

p∈PR

E1R(p)αfσ(p)−1

(7)

where

E1R(pRi) =
(1 + α + α2 + · · ·+ αNi−1)

Ni

∑

p∈Pri

E1(p)

(8)
and Ni is the number of the elements of Pri. With
discount rate α, we can give a better value if the robot
enters a room sooner where the object is expected to
be found. The possibility of a reduced room is not
the simple sum of the refined parts but with average
discount (8).
When the robot is far from the object and the pos-
sibilities E1 around the robot becomes zero, it may
need much time for the robot to leave there without
other policies. In order to avoid such cases, we define
a map E2 : Pr → <. We give initial values E2(p) = 0
(∀p ∈ Pr) in advance, and update the value while the
robot is moving. Let p0 ∈ PR be the room where the
robot is. If there are no pairs of a place p ∈ Pr and
a trace σ in the prediction tree such that fσ(p) < ∞
and E1(p) > 0, we update E2(p0) as E2(p0) − 1 to
show that there are no rooms with possibility around
p0. We give

J2(σ) =
∑

p∈Pr,fσ(p)<∞
E2(p) +

∑

p∈PR,fσ(p)<∞
E2R(p)

(9)
where E2R(pRi) =

∑
p∈Pri

E2(p).
Thus we give a cost function of σ as

J(σ) =
{

J1(σ) (J1(σ) > 0)
J2(σ) (J1(σ) = 0) (10)

The HLC searches for the optimal traces σM with (10)
in the prediction tree, and if σ̄M1 is controllable, σ̄M1

is set to be enabled. If there are more than one optimal
transition, choose one at random.

5.4 Numerical Simulation

We give a result of a numerical simulation. Let the
discount rate α = 0.7, the length of prediction tree N
= 4. Suppose that the object is in the room 4 at the
area 4c.
We show a prediction tree at the initial state (Fig. 10).
The robot first entered the room 1 because the trace
tsta1t12 contained many rooms that had possibility to
find the object. But the robot could not find the object
along the trace, and left the rooms 1 and 2 by detecting
the dead end. Then the robot tried to enter another
room to find the object. The robot just happend to
enter the room 4 while the both the rooms 3 and 4
were evaluated at the same score. After finding the
object, it went to the exit. The whole trajectory is
shown in Fig. 11.
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Figure 10: Tree at the initial state

6 Conclusion

In this paper, we modeled robot systems by Petri nets,
and proposed a high level controller based on an LLP
supervisor. We considered a simple example of a mo-
bile robot which searches for an object in a building.
We gave several sub tasks to the robot and proposed
some policies for LLP supervisory control.
We proposed a method for selecting a “qualitative”
command to a mobile robot using LLP supervisory
control. We calculated a prediction tree consisting
of N -step projection of its qualitative behavior on-
line. We proposed a method for dynamical stepwise
refinement of the Petri net model according to the
consciousness so that the effective calculation of the
tree is achieved.
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