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1 Introduction

Limit cycles are one of the most important phenomena
in nonlinear dynamical systems, and applied in many
engineering fields. While stability analysis of limit cy-
cles is a fundamental problem and many theories such
as Lyapunov function methods have been proposed,
the inverse problem of synthesizing a nonlinear sys-
tem which has a stable and prescribed limit cycle is
also important. Several methods for the inverse prob-
lem have been proposed [1, 2, 3, 4]. These methods are
based on Lyapunov functions V and synthesized non-
linear systems have limit cycles satisfying V (x) = c
where x is a state variable and c is a given constant
value.

On the other hand, Dynamical systems whose states
consist of both continuous and discrete variables are
called hybrid dynamical systems. Behaviors of their
discrete state are piecewise-constant, and their contin-
uous state evolves according to a differential equation
corresponding to the current discrete state. Behaviors
of the continuous state are inherently nonsmooth be-
cause of change of the discrete state. Many physical
and mechanical systems can be naturally described by
hybrid systems. In hybrid systems, stability analysis is
very difficult since continuous Lyapunov functions are
no more useful. Recently, many approaches to stability
analysis based on discontinuous Lyapunov functions or
multiple ones have been developed [5, 6, 7].

Since several hybrid systems do not have a constant
steady state but a periodic one, studies of limit cycles
in hybrid systems are more important. For example,
the existence and stability of limit cycles in switched
server system [8, 9], and global asymptotical stability
of limit cycles in relay feedback systems using extended
Poincaré maps [10] have been reported. In more gen-
eral cases, discrete-time model is derived by focusing
on points where behaviors hit switching surfaces, and
it is possible to check the exponential convergence of
limit cycle by using discrete-time Lyapunov functions
[11]. However, there are little studies on how to con-
struct a hybrid system which has a stable nonsmooth

limit cycle. From a engineering viewpoint, such a limit
cycle is applicable: for example, walking patterns of
humanoid robots can be approximated by it [12, 13].

This paper proposes a synthesis method for hybrid
systems with nonsmooth limit cycles. In the proposed
method, a given periodic orbit is split into some ellip-
soidal curves, we calculate a piecewise quadratic Lya-
punov function V (x) such that V (x) is constant on the
curve, and we obtain a desired hybrid system. The
proposed method is an extension of Green’s method
[4].

This paper is organized as follows. In Section
2, we revisit and reformulate some useful techniques
reported in [4] and show illustrative examples. In
Section 3, hybrid systems derived from piecewise
quadratic Lyapunov functions are presented and we
discuss their properties. An example illustrates the
results.

2 Systems with Prescribed Limit Cycles

In this section, we present several concepts that will
be used throughout this paper. First, we consider the
following continuous differential equations:

ẋ = f(x) + g(x), (1)
f : Rn → Rn, g : Rn → Rn.

Here, we present sufficient conditions for the exis-
tence of an asymptotically stable limit cycle in (1).

Theorem 1 (Green [4]) If there exists a continu-
ously differentiable function V : Ω → Rm where Ω
is a subset of Rn, (n > m) such that

• ∂V (x)
∂x

f(x) = 0, ∀x ∈ Ω.

• For each µth component of V, 1 ≤ µ ≤ m,

∂Vµ(x)
∂x

g(x)Vµ(x) < 0,

∀x ∈ Ω such that Vµ(x(t)) �= 0.
Then, (1) has an asymptotically stable limit cycle
which satisfies V (x) = 0.
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From Theorem 1, a trajectory of (1) starting from any
initial point converges to the hypersurface V (x) = 0,
and after the convergence the trajectory forms a closed
curve on this hypersurface. As a special case, we con-
sider that m = 1, and a system is described by the
following affine form:

ẋ = Ax + a + V (x)(Bx + b), (2)

where x ∈ Rn, A,B ∈ Rn×n, a, b ∈ Rn, and V :
Rn → R. In order to simplify the description of the
system, we introduce an argumented state vector and
rewrite (2) as follows:

˙̃x = Ãx̃ + V (x)B̃x̃, (3)

where x̃ =
[
x
1

]
, Ã =

[
A a
0 0

]
, B̃ =

[
B b
0 0

]
.

In (3), V (x) is assumed to be

V (x) = xT Px + 2pT x + π = x̃T P̃ x̃, (4)

where P ∈ Rn×n is a positive definite symmetric ma-

trix, p ∈ Rn, π ∈ R, and P̃ =
[

P p
pT π

]
. Then, the

following proposition is easily shown.

Proposition 1 If there exists a symmetric matrix P̃
given by (4) such that

• ÃT P̃ + P̃ Ã = 0.

• B̃T P̃ + P̃ B̃ < 0.

Then, (3) has an asymptotically stable limit cycle.

For a given symmetric matrix P̃ , we can construct a
system with an asymptotically stable limit cycle by
choosing matrices Ã and B̃. Note that the matrix Ã
is simply given by

Ã = G̃AP̃ , (5)

where G̃A =
[
GA 0
0 0

]
and GA is an arbitrary skew-

symmetric matrix. The matrix B̃ can be also chosen
as follows:

B̃ = G̃BP̃ , (6)

where G̃B =
[
GB 0
0 0

]
and GB is a matrix which sat-

isfies GT
B + GB < 0.

Example 1 (n = 2) Now, we consider the following
symmetric matrix P̃ .

P̃ =

[
7.5 1 −2.7
1 2.5 0

−2.7 0 −5

]
. (7)

Then, we choose two matrices Ã and B̃ such that these
matrices satisfy (5) and (6). As an example, we set

G̃A =

[
0 −1 0
1 0 0
0 0 0

]
(8)

G̃B =

[ −0.0462 −0.002 0
0.0092 −0.0314 0

0 0 0

]
. (9)

Then, we have

Ã =

[ −1 −2.5 0
7.5 1 −2.7
0 0 0

]
, (10)

B̃ =

[ −0.3445 −0.0412 0.1247
0.1004 −0.0877 0.0248

0 0 0

]
. (11)

Example 2 (n = 3) Set P̃ , G̃A, and G̃B as follows:

P̃ =




2 0.8 1.4 −1.7
0.8 1 0.3 2
1.4 0.3 3 −0.5
−1.7 2 −0.5 −3


 , (12)

G̃A =




0 1 0.5 0
−1 0 1 0
−0.5 −1 0 0

0 0 0 0


 , (13)

G̃B =




−0.0185 −0.0005 0.001 0
0.0015 −0.0315 −0.001 0
−0.002 −0.003 −0.0005 0

0 0 0 0


 . (14)

Then we have

Ã =




1.5 1.15 1.8 1.75
−0.6 −0.5 1.6 1.2
−1.8 −1.4 −1 −1.15

0 0 0 0


 , (15)

B̃ =




−0.036 −0.015 −0.0231 0.03
−0.0236 −0.0306 −0.0104 −0.065
−0.0071 −0.0047 −0.0052 −0.0024

0 0 0 0


 . (16)

Figures 1 and 2 show simulation results of Examples
1 and 2 from two initial states, respectively. Dashed
lines in Figure 1 denote the level curves of the Lya-
punov function. Both trajectories in this figure con-
verge to the same limit cycle which satisfies V (x) = 0.
In contrast, in Figure 2, two trajectories converge to
different limit cycles which satisfy V (x) = 0 shown by
an elliptic sphere.

It is clear from these results that this approach
can not synthesize a prescribed limit cycle when
n > 2, since the constraint V (x) = 0 defines an
(n−1)-dimensional manifold and trajectories converge
to limit cycles on the manifold depending on initial
states. In order to determine one limit cycle in the
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Figure 1: Trajectories of Example 1 from two initial
conditions x(0) = ±[1.5 1.5]T .
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Figure 2: Trajectories of Example 2 from two initial
conditions x(0) = ±[5 5 5]T .

case n > 2, (3) is modified as the following system
with V : Rn → Rn−1:

˙̃x =




A 0 a
Ξ1 0 ξ1

...
...

...
Ξn−2 0 ξn−2[
0 0

]
0 0


 x̃ +




V1

[
B 0 b

]
x̃

α1V2

...
αn−2Vn−1

0


 , (17)

where x̃ = [x1 x2 · · ·xn 1]T , A,B ∈ R2×2, a, b ∈ R2×1,
Ξi ∈ R1×2, ξi, αi ∈ R, i = 1, . . . , n − 2, and V =
[V1 V2 · · ·Vn−1]T : Rn → Rn−1. Vi(x) is given by

Vi(x) =




[
x1 x2 1

] [
P p
pT π

]
x1

x2

1


 , if i = 1,

ζix1 + ηix2 + λi − xi+1, otherwise.
(18)

V1(x) defines an elliptic cylinder and the other func-
tions Vi(x) define hyperplanes in the n-dimensional

V (x)=01

V (x)=02

V (x)=0

Figure 3: The constraint V (x) = 0 in 3-dimensional
space.

space. Figure 3 shows the relation between V1(x) and
V2(x). To construct a system (17) with an asymptot-
ically stable limit cycle which satisfies V (x) = 0 (this
defines a 1-dimensional manifold), we consider the con-
dition ∂V (x)

∂x f(x) = 0. The matrix A and the vector a
can be determined by (5). For the other parameters
Ξi, ξi, i = 1 . . . n − 2,

∂Vi(x)
∂x

f(x) =
[
ζi ηi −1

] [
A a

Ξi−1 ξi−1

]
= 0, (19)

which implies[
Ξi−1 ξi−1

]
=

[
ζi ηi

] [
A a

]
. (20)

Thus, using (5) and (20), we can construct (17)
which has a limit cycle specified by the intersec-
tion of Vi. Next we consider the second condition
∂Vi(x)

∂x g(x)Vi(x) < 0. Here, we introduce the follow-
ing proposition [4, Corollary 2.1].

Proposition 2 Assume that Theorem 1 is applicable
to V1. If all trajectories of (1) are bounded, the second
condition of Theorem 1 is modified as follows:

• For each µth component of Vµ, 2 ≤ µ ≤ n − 1,

∂Vµ(x)
∂x

g(x)Vµ(x) < 0,

∀x ∈ Ω such that V1(x) = 0.

By choosing the matrix B and the vector b from (6), it
is guaranteed that all trajectories converge to V1(x) =
0 as t → ∞. When V1(x) = 0,

∂Vi(x)
∂x

g(x)Vi(x)

=
[
ζi ηi −1

] [
V1

[
B 0 b

]
x̃

αi−1Vi

]
αi−1Vi(x)

= −αi−1Vi(x)2 < 0. (21)

Hence, once B and b are determined, the convergence
condition ∂Vi(x)

∂x g(x)Vi(x) < 0 is satisfied automati-
cally in (17) from Proposition 2, and trajectories con-
verge to one limit cycle. It is noted that αi−1 > 0
represents a convergence rate of Vi.
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Figure 4: Trajectories of Example 3 from two initial
conditions x(0) = ±[1.5 1.5 5]T .

Example 3 We consider the case when V : R3 →
R2. Let V1(x) be (7) and

V2(x) = 1.5x1 − 0.2x2 − x3. (22)

Set matrices A,B and vectors a, b as (10) and (11).
Using (20), we have[

Ξ1 ξ1

]
=

[
3 3.95 −0.54

]
. (23)

Figure 4 shows a simulation result of this example.
These trajectories converge to the same limit cycle.

3 Synthesis Method

We consider hybrid systems described by{
ẋ(t) = f(x(t), q(t)),
q+(t) = φ(x(t), q(t)), (24)

where x ∈ Rn is the continuous state vector, q ∈ Q =
{1, 2, · · · , M} is the discrete state, q+(t) refers to the
lefthand limit of the function q(t) at time t, that is
q+(t) = limε→+0 q(t + ε). The function φ : Rn × Q →
Q describes the change of the discrete state, and a
switching of discrete state from q to r is described by
a switch set Sq,r:

Sq,r = {x ∈ Rn |φ(x, q) = r}, q, r ∈ Q. (25)

The function f : Rn × Q → Rn shows a vector field,
and the continuous state x(·) evolves according to
f(·, q) for each state q ∈ Q. In this paper each f(·, q)
is called a subsystem q.

Definition 1 A solution (x(t), q(t)) of (24) is said to
be well-defined if the following conditions hold:

(i) The solution is defined for t ∈ [0,∞).

(ii) There exist a sequence {tn}∞n=0 such that t0 = 0,
tn+1 > tn, n = 0, 1, 2, . . . , limn→∞ tn = ∞, and
q(t) is discontinuous at tn, n = 1, 2, . . . .

{tn}∞n=0 is called the switching sequence of the solution
(x(t), q(t)).

Definition 2 A well-defined solution (x(t), q(t)) is
said to be a periodic trajectory if there exists a time
T > 0 such that x(t + T ) = x(t), q(t + T ) = q(t) for
all t ≥ 0

Definition 3 If a well-defined solution (x(t), q(t)) is
an isolated periodic trajectory, it said to be a limit cy-
cle.

The hybrid space of (24) is given by H := Rn × Q.
Consider an initial state which lies in a set of possi-
ble initial conditions (x0, q0) ∈ H0 ⊂ H, and assume
that a trajectory (x(t), q(t)) starting from (x0, q0) is
well-defined. The trajectory of (24) evolves according
to ẋ = f(x, q0), and if a state x(t) hits a switch set
Sq,r at time tn, the corresponding discrete transition
from the discrete state q to r occurs. The evolution of
the discrete state can be described by a sequence as
follows:

ξ(x0, q0) = (q0, t0), (q1, t1), . . . , (26)

where (qk, tk) means that ẋ = f(x(t), qk) for tk ≤ t <
tk+1 and q+(tk) = g(x(t), qk) = qk+1. For (26), we
define the following projection to a time sequence:

ξt(x0, q0) = t0, t1, t2 . . . . (27)

To express a sequence of the time interval where dis-
crete state equals q, we define the following projection:

ξt(x0, q0)|q = tq0, t
q
1, . . . , t

q
2k, tq2k+1, . . . , k ∈ N, (28)

where tq2k and tk2k+1 are time instances where the sub-
system q is switched on and off, respectively. Fur-
thermore, to obtain the duration which the system is
driven by the subsystem q, we define the interval com-
pletion I(ξt(x0, q0)|q) as a set obtained by taking the
union of all close intervals

I(ξt(x0, q0)|q) =
⋃

k∈N

[tq2k, tq2k+1]. (29)

Denote E(ξt(x0, q0)|q) as the even sequence of
ξt(x0, q0)|q

E(ξt(x0, q0)|q) = tq0, t
q
2, . . . , t

q
2k, . . . , k ∈ N. (30)

The conditions of Theorem 1 are based on only one
Lyapunov function. We will show that Theorem 1 is
extended to the form for hybrid systems. We consider
the following hybrid system;{

ẋ(t) = f(x(t), q(t)) + g(x(t), q(t)),
q+(t) = φ(x(t), q(t)). (31)
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Theorem 2 For all hybrid sequences ξ(x0, q0) of (31)
which start from any initial consition (x0, q0) ∈ H0, if
there exists a continuously differentiable function
Vq : Ωq → Rm, for all q ∈ Q where Ωq is a subset

of Rn, (n > m) such that

• ∂Vq(x)
∂x

f(x, q) = 0,

∀x ∈ Ωq,∀t ∈ I(ξt(x0, q0)|q).
• For each µth componet of Vq, 1 ≤ µ ≤ m,

∂Vqµ(x)
∂x

g(x, q)Vqµ(x) < 0,

∀x ∈ Ωq s.t. Vqµ(x) �= 0, ∀t ∈ I(ξt(x0, q0)|q).
• Vq(x) = Vr(x), x ∈ Sq,r, ∀t ∈ E(ξt(x0, q0)|q).

Then, (31) has an asymptotically stable limit cycle.

For hybrid systems, it is common to use multiple or
piecewise quadratic Lyapunov functions [6, 7]. We
consider the following hybrid system with Vqi given
by (18).


˙̃x =




Aq 0 aq

Ξq1 0 ξq1

...
...

...
Ξqn−2 0 ξqn−2[
0 0

]
0 0


 x̃ +




Vq1

[
B 0 b

]
x̃

αq1Vq2

...
αqn−2Vqn−1

0


 ,

q+(t) = r, if q(t) = q and x(t) ∈ Sq,r,
(32)

where the transition of discrete state from q to r occurs
whenever trajectories hit a hyperplane

Sq,r = {x ∈ Rn|c̃T
q,rx̃ = 0}, q, r ∈ Q, (33)

where c̃ =
[
cT
q,r dq,r

]T
, cq,r ∈ Rn, and dq,r ∈ R. For

given Vq, this hybrid system satisfies both the first
and second condition in Theorem 2 by determining
each parameter from (5), (6), (20) and (21). But Vq

is not allowed to choice freely because of the third
condition. This condition requires the continuity of
Lyapunov functions on all switching surfaces, and it
is hard to find such Lyapunov functions in general.
From Proposition 2, however, if Vq1 satisfies the con-
tinuity on all switching surfaces, the second and third
condition of Theorem 2 is relaxed.

Since Vq1 is quadratic, this type of Lyapunov func-
tions can be formulated by using the conditions for
discrete transition [6]. Let the Lyapunov function be
Vq1(x) = x̃T P̃qx̃ and consider the case that the discrete
state switches from q to r. The condition of switch-
ing is given by c̃T

q,rx̃ = 0. Since Lyapunov functions
should be continuous on switching surfaces, the third
condition in Theorem 2 can be written as

P̃r = P̃q + t̃Tq,r c̃q,r + c̃T
q,r t̃q,r, (34)

where t̃i,j is an (n + 1)-dimensional vector.
In a piecewise affine system which is a special class

of hybrid systems, the state space is partitioned into
several regions Xq ⊆ Rn, q ∈ Q, and each discrete
state is defined by the region. If each region forms
a polyhedron with pairwise disjoint interior, we can
obtain the following matrices for each region:

Ẽq =
[
Eq eq

]
, F̃q =

[
Fq fq

]
,

where

Ẽqx̃ ≥ 0, x ∈ Xq, (35)

F̃qx̃ = F̃rx̃, x ∈ Xq ∩ Xr. (36)

In this paper, these polyhedrons are given by

Ẽq =
[
Eq1 Eq2 0 · · · 0 eq

]
, (37)

where Eqi is the ith column vector of Eq, since we con-
sider a two-dimensional quadratic Lyapunov function
independently of the dimension of the system

By using this representation, the requirement that
a Lyapunov function is continuous at every point on
the switching surface can be written as

P̃q = F̃qT F̃q, (38)

where T is a symmetric matrix. Once the continuity
with respect to Vq1 is assured by using (34) or (38),
from Proposition 2 we have the following proposition.

Proposition 3 Assume Vq1 , for all q ∈ Q, satisfies
all conditions of Theorem 2. If all trajectories of (32)
are well-defined, the second and third conditions of
Theorem 2 respect to Vqµ , 2 ≤ µ ≤ n− 1, is simplified
as follows:

• For each µth componet of Vqµ , 2 ≤ µ ≤ n − 1,

∂Vqµ(x)
∂x

g(x, q)Vqµ (x) < 0,

∀x ∈ Ωq s.t. Vq1(x) = 0, ∀t ∈ I(ξt(x0, q0)|q).
• For each µth componet of Vqµ , 2 ≤ µ ≤ n − 1,

Vqµ(x) = Vrµ(x), x ∈ Sq,r s.t. Vq1(x) = Vr1(x),

∀t ∈ E(ξt(x0, q0)|q).
Example 4 We synthesize a hybrid system whose tra-
jectories converge to the following limit cycle.

V1(x) =
[
6x2

1 + 2x2
2 − 8

x2 − x3

]
,

[
1 −1 0
1 1 0

]
x ≥ 0,

V2(x) =
[
2x2

1 + 6x2
2 − 8

x1 − x3

]
,

[
1 −1 0
−1 −1 0

]
x ≥ 0,

V3(x) =
[
6x2

1 + 2x2
2 − 8

−x2 − x3

]
,

[−1 1 0
−1 −1 0

]
x ≥ 0,

V4(x) =
[
2x2

1 + 6x2
2 − 8

−x1 − x3

]
,

[−1 1 0
1 1 0

]
x ≥ 0,
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Figure 5: Trajectory of Example 4 from initial condi-
tion x(0) = [0 0.5 5]T .

In Example 4, since Vq1 , q ∈ {1, 2, 3, 4}, are continuous
on all switching surfaces, and Vq2 are also continuous
under the condition Vq1 = Vr1 , we can construct a hy-
brid system with an asymptotically stable limit cycle.
A trajectory converges to the desired limit cycle as
shown in Figure 5.

4 Conclusions

In this paper, we propose a synthesis of hybrid systems
with limit cycles defined by a constraint V (x) = 0.
Limit cycles of designed hybrid systems are composed
by elliptic cylinders and hyperplanes. Synthesis of hy-
brid systems with more general form of limit cycles is
a future study.
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