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SUMMARY Linear discriminant analysis (LDA) is a basic
tool of pattern recognition, and it is used in extensive fields,
e.g. face identification. However, LDA is poor at adaptability
since it is a batch type algorithm. To overcome this, new algo-
rithms of online LDA are proposed in the present paper. In face
identification task, it is experimentally shown that the new algo-
rithms are about two times faster than the previously proposed
algorithm in terms of the number of required examples, while
the previous algorithm attains better final performance than the
new algorithms after sufficient steps of learning. The meaning
of new algorithms are also discussed theoretically, and they are
suggested to be corresponding to combination of PCA and Ma-
halanobis distance.
key words: linear discriminant analysis, online learning, face

identi�cation, matrix dynamics

1. Introduction

Linear discriminant analysis (LDA) is a basic tool of
pattern recognition, and it is used in extensive fields,
e.g. face identification [8], [9]. It is also pointed out that
dimension reduction via LDA is useful as a preprocess-
ing for other methods such as support vector machines
[10]. However, LDA is poor at adaptability since it is
a batch type algorithm. Namely, LDA is designed in
the following manner: (1) all sample patterns are given
at once, (2) the discriminant matrix A is calculated for
the sample patterns, and then (3) identification is per-
formed by use of A. Owing to this design, we have
to re-calculate A every time when we add new data to
update the identification system. This calculation is
heavy for high dimensional data such as face images.

When situation changes gradually or suddenly, one
time learning is not sufficient and additional learning
is indispensable for adaptability. Thus identification
systems must have the ability to learn new data and
update itself with small calculations. Such algorithms
which have this ability is called online learning algo-
rithms. As we have mentioned above, conventional
LDA is not online learning.

To overcome this disadvantage of LDA, the au-
thors have been proposed an online LDA algorithm
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[15]–[17]. In contrast to the conventional LDA, up-
dating the identification system according to new ad-
ditional data can be executed with low computational
cost by online LDA. Hence online LDA has the ability
of adaptation to changes of environment. Our online
LDA also has an advantage that huge matrices never
appear in its calculation.

Though iterative algorithms have been proposed∗

for neural network based LDA [5], [6], they are not suf-
ficiently “online.” Those algorithms keep n2 × n2 ma-
trices when they are applied to image recognition tasks
with image size n × n. Then they require O(n4) time
for one step updating and O(n4) memory. These com-
putational costs are still too large to update the system
on the fly.

In the present paper, two types of new algorithms
for online LDA are proposed. The following points are
shown experimentally:

• The new algorithms are about two times faster
than the previously proposed algorithm. Namely,
the new algorithms attain the same level of perfor-
mance by half steps of learning compared with the
original one. This advantage is mainly owed to the
fact that new algorithms are robust for choice of
the learning coefficient η.

• The previously proposed algorithm attains better
final performance after sufficient steps of learning.

The meaning of new algorithms are also discussed. By
theory and numerical experiments, it is suggested that
the new algorithms correspond to combination of prin-
cipal component analysis (PCA) and Mahalanobis dis-
tance.

2. Linear Discriminant Analysis

In pattern recognition task, sample pattern vectors
x(1), · · · ,x(t) ∈ RN and their classes c(1), · · · , c(t) ∈
{1, 2, · · · ,M} are given first. Then, a new pattern x
with unknown class is presented and we want to esti-
mate the class of this x.

∗The original algorithm in [5] is a batch learning. How-
ever, we can easily modify it to an iterative learning by
replacing the calculation of the standard deviation in [5]
with an iterative one.
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Fig. 1 Pattern recognition via LDA. The presented pattern
vector x is converted to a feature vector y by use of a certain
“discriminant matrix” A. Then it is compared with class mean
vectors ȳc.

The procedures of pattern recognition via LDA is
as follows (Fig. 1):

1. Generate a certain “discriminant matrix” A.
2. Transform the presented pattern vector x to a fea-

ture vector: y = Ax.
3. Compare it with mean vector ȳc = Ax̄c for each

class c. Here x̄c is the mean pattern vector of class
c.

4. Answer the “nearest” class from the point of view
of ‖y− ȳc‖2. Here ‖z‖ ≡

√
zT z denotes Euclidean

norm.

Performance of recognition via LDA depends cru-
cially on the discriminant matrix A. The most
popular criterion to determine A is Fisher crite-
rion [11]: select such A which maximizes F =
Tr

[
(ATWA)−1(ATBA)

]
, where B andW are the vari-

ance matrices “between classes” and “within classes.”
The precise definitions of B and W will be given soon
later.

Concrete procedures to calculate A based on Fisher
criterion is as follows:

1. Calculate the mean pattern x̄ of the whole data
and the mean pattern x̄c of each class c:

x̄ =
1
t

t∑
τ=1

x(τ ), (1)

x̄c =
1∑t

τ=1 δ(c, c(τ ))

t∑
τ=1

δ(c, c(τ ))x(τ )

(c = 1, · · · ,M), (2)

where δ(c, c′) is 1 if c = c′ and 0 if c �= c′.
2. Calculate the variance matrices B of the mean pat-

terns and W of the errors of patterns from corre-
sponding mean patterns:

B =
1
M

M∑
c=1

(
x̄c − x̄

)(
x̄c − x̄

)T
, (3)

W =
1
t

t∑
τ=1

(
x(τ )− x̄c(τ)

)(
x(τ )− x̄c(τ)

)T
. (4)

3. Solve the generalized eigenvalue problem

Ba = λWa, (5)

where λ is a real number and a is anN -dimensional
vector. Normalize the solutions a1, · · · ,aN so that
aT

i Waj = δ(i, j) holds for all i and j. Sort the
solutions so that λ1 ≥ · · · ≥ λN holds for the cor-
responding λs.

4. Set the first L solutions a1, · · · ,aL of (5) as the
column vectors of A: A = (a1, · · · ,aL).

This procedure is a batch learning type algorithm.
Because of its design, we have to re-calculate A every
time when we add new data to update the identification
system. This calculation is heavy for high dimensional
data such as face images. Online LDA is thus desired.

3. Matrix Dynamics for Online LDA—
Theoretical Foundation of New Algorithms

3.1 Summary of This Section

By the procedure in the previous section, we obtain a
matrix A = (a1, · · · ,aL) which satisfies

Bai = λiWai (i = 1, · · · , L), (6)

aT
i Waj = δij (i, j = 1, · · · , L). (7)

Putting Γ = diag(λ1, · · · , λL), we can write these equa-
tions in matrix form as

BA =WAΓ (Γ: square matrix),

ATWA = I (I: identity matrix).
(8)

As we have described in the previous section, this A
maximizes Fisher criterion F . See textbooks on LDA
(e.g. [11]) for details. Online learning algorithm to find
such A is proposed in [15]–[17].

In the present paper, two types of novel algorithms
for online LDA are proposed. Though property of the
new algorithms is not completely investigated, it is sug-
gested that we obtain a matrix A which satisfy

BA = AΓ (Γ: square matrix),

ATWA = I (I: identity matrix).
(9)

Exact descriptions of this assertion will be shown
through propositions 1 to 4 later. When A satisfies (9),
this A corresponds not to Fisher criterion but to com-
bination of principal component analysis (PCA) and
Mahalanobis distance. Namely,

1. reduce the dimension of input pattern by PCA on
B (PCA stage), and then,
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2. measure the distance between the present pattern
and the class means by Mahalanobis distance on
W (Mahalanobis distance stage).

The reason is as follows: the first equation in (9) means
that column vectors a1, · · · ,aL are on a hyperplane
which is spanned by L eigenvectors (i.e. principal com-
ponents) of B, while the second equation in (9) means
that Var[y − ȳc] = ATVar[x − x̄c]A = ATWA = I
and therefore Mahalanobis distance between y and ȳc

is equal to Euclidean norm ‖y − ȳc‖.

3.2 Strategy to Construct Online LDA

Our online LDA algorithms are constructed based on
matrix dynamics and stochastic approximation method
[7]. Namely, we follow the below strategy so as to ob-
tain online LDA algorithms:

1. Consider a dynamics whose fixedpoints are desired
solutions of the current problem.

2. Transform the continuous-time dynamics to its
corresponding discrete-time dynamics.

3. Replace the sample mean in the dynamics with its
instantaneous value.

First of all, novel matrix dynamics are proposed
and their convergence properties are discussed in this
section.

3.3 Novel Matrix Dynamics

Let B be a positive semi-definite symmetric N × N
matrix, and W be a positive definite symmetric N ×
N matrix. This B corresponds to the variance matrix
“between classes,” whileW corresponds to the variance
matrix “within classes.”

Let A(t) be an N × L matrix and consider matrix
dynamics

[type I]
dA(t)
dt

= BA(t)− 1
2
BA(t)A(t)TWA(t)

− 1
2
A(t)A(t)TWBA(t), (10)

[type II]
dA(t)
dt

= BA(t)− 1
2
A(t)A(t)TBWA(t)

− 1
2
A(t)A(t)TWBA(t). (11)

Sample flows of these dynamics are shown in Fig. 2.
These dynamics are slightly different from the dy-

namics for previous online LDA [15]–[17] (Fisher crite-
rion)

dA(t)
dt

= BA(t)− 1
2
BA(t)A(t)TWA(t)

− 1
2
WA(t)A(t)TBA(t) (12)

Fig. 2 Sample flows of the proposed dynamics (upper: type
I, lower: type II). In these samples, A is 2 × 1 matrix, and it

is plotted as 2-dimensional vector in the figures. B =

�
4 2
2 1

�
,

W =

�
1 0
0 2

�
. The ellipse in each figure shows the contour

AT WA = 1. The cross lines show the eigenspaces of B: direc-
tions “/” and “\” correspond to eigenvalues 5 and 0, respectively.
It is observed that (i) the eigenvector A∗ of B with a non-zero
eigenvalue and AT

∗ WA∗ = 1 is a stable fixedpoint [desired solu-
tion], (ii) other stable fixed points [spurious solutions] or “diver-
gence solution” exist, (iii) if an initial point A(0) is not “too far”
from the origin O, A(t) converges to one of the desired solutions.

and Oja’s dynamics for PCA

dA(t)
dt

= BA(t)−A(t)A(t)TBA(t). (13)



1434
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.6 JUNE 2001

3.4 Fixedpoints of Dynamics

We are interested in “fixedpoints” of the proposed dy-
namics since they decide asymptotic behavior of corre-
sponding online LDA algorithms. Though A is not a
point but a matrix , the term “fixedpoint” is used for a
matrix A which satisfy dA/dt = O through the present
paper. The following propositions suggest characteris-
tics of the fixedpoints. The proofs of the propositions
are given in Appendix.

First propositions are sufficient conditions of fixed-
points.

Proposition 1: If an N × L matrix A satisfies (9)
for an L × L matrix Γ, A is a fixedpoint of the type I
dynamics. ✷

Proposition 2: If an N ×L matrix A satisfies (9) for
an L× L symmetric matrix Γ, A is a fixedpoint of the
type II dynamics. ✷

On the other hand, necessary conditions of fixed-
points are as follows.

Proposition 3:

1. If an N × L matrix A is a fixedpoint of the type I
dynamics and ATWA does not have an eigenvalue
2, there exists an L×L matrix Γ such that BA =
AΓ.

2. In addition, if rankA = L,

Γ(ATWA− I) + (ATWA− I)Γ = O. (14)
✷

Proposition 4:

1. If an N ×L matrix A is a fixedpoint of the type II
dynamics, there exists an L×L symmetric matrix
Γ such that BA = AΓ.

2. In addition, if rankA = L,

Γ(ATWA− I) = O. (15)

3. In addition, if rank(BA) = L, ATWA = I.
✷

There exist gaps between necessary conditions and
sufficient conditions above. Indeed, there are fixed-
points which do not satisfy (9). This problem is dis-
cussed next.

3.5 Desired Solutions and Nuisance Solutions

Let p1, · · · ,pN be the unit eigenvectors of B and their
corresponding eigenvalues be λ1 ≥ · · · ≥ λN . Let PL =
(p1, · · · ,pL). If A is represented as A = PLΘ with
an arbitrary matrix Θ which satisfy ΘTPT

LWPΘ = I,
equation (9) holds for this A. We call such A = PLΘ

Fig. 3 Convergence of A(t) to “desired” solutions by the
proposed dynamics. In spite of existence of “spurious” so-
lutions or “divergence” solutions, it is observed that A(t)
is not trapped by these nuisance solutions if the initial
value A(0) is near the origin O. Left: type I, right:
type II. Upper: log(“angle between p1 and Π(t) [rad]”), middle:
log(“angle between p2 and Π(t) [rad]”), lower: log(Tr(A(t)T

WA(t)−I)T (A(t)T WA(t)−I)), where p1 and p2 are the two ma-
jor eigenvectors of B, and Π(t)=span{“column vectors of A(t)”}.
The horizontal axis of each plot is time t = 0, 0.1, 0.2, · · · , 1.0.
On the vertical axis, the five-number summaries (minimum, first
quartile, median, third quartile, and maximum) for 100 trials are
displayed.

as “desired” solutions. By propositions 1 and 2, de-
sired solutions are fixedpoints of the proposed dynam-
ics. Moreover, Fig. 2 suggests that they are stable fixed-
points. At the same time, Fig. 2 also shows that there
can be other stable fixedpoints (“spurious” solutions)
or “divergence” solutions.

In spite of these nuisance solutions, it is observed
in numerical experiments that A(t) is not trapped by
nuisance solutions and A(t) converges successfully to
desired solutions if the initial value A(0) is near the
origin O.

Examples are shown in Fig. 3, where B = B̃T B̃,
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B̃ =


1 2 1 2 1 2 1 2 1 2
3 2 1 3 2 1 3 2 1 3
3 1 4 1 5 3 1 4 1 5


,

W = diag(1, 2, · · · , 10). The size of A is 10×2. In each
trial, initial values of elements of A are generated ran-
domly according to normal distribution of mean 0 and
standard deviation 0.001. From this initial value A(0),
evolution of A(t) is numerically calculated by simple
Euler method with time step ∆t = 0.001. The up-
per and middle plots show that there exists a matrix
Γ which satisfy BA ≈ AΓ, after sufficient time. More-
over, this A corresponds to the major eigenvectors of
B. The lower plots show that A(t)TWA(t) → I.

From the above observation, we select A(0) ≈ O
in Sect. 5.

4. Fast Online LDA Algorithm

In order to construct online LDA algorithm, we trans-
form the dynamics type I and II, which are continuous-
time dynamics, to their discrete-time versions:

[type I]

A(t+ 1) =A(t) + η

[
BA(t)− 1

2
BA(t)A(t)TWA(t)

− 1
2
A(t)A(t)TWBA(t)

]
,

(16)

[type II]

A(t+ 1) =A(t) + η

[
BA(t)− 1

2
A(t)A(t)TBWA(t)

− 1
2
A(t)A(t)TWBA(t)

]
,

(17)

where the learning coefficient η is a small positive num-
ber. In these discrete-time dynamics, B and W are
N × N matrices and we do not like to keep their val-
ues explicitly because N can be very large. As for B,
see the note on efficient calculation at the bottom of
this section. As for W , we replace the “mean value”
W = 1

T

∑T
t=1(x(t)− x̄c(t))(x(t)− x̄c(t))T with its “in-

stantaneous value” (x(t)− x̄c(t))(x(t)− x̄c(t))T . This
replacement is justified by the theory of stochastic ap-
proximation [7]: A(t) converges to the same point as
for the original continuous-time dynamics when η → 0.
Then the following online LDA algorithms are obtained.

At every time step t = 1, 2, 3, · · · , a new pair
(x(t), c(t)) is presented, where x(t) is anN -dimensional
data vector, c(t) ∈ {1, · · · ,M} is the class of x(t), and
M is the number of classes. Based on this pair, auxil-
iary variables are updated as follows:

tc(t) = tc(t− 1) + δ(c, c(t)), (18)

x̄(t) =
(
1− 1

t

)
x̄(t− 1) +

1
t
x(t), (19)

x̄c(t)

=




(
1− 1

tc(t)

)
x̄c(t− 1)+

1
tc(t)

x(t) (c=c(t)),

x̄c(t−1) (c �=c(t)),
(20)

vc(t) = x̄c(t)− x̄(t), (21)

w(t) = x(t)− x̄c(t)(t), (22)

B(t) =
1
M

M∑
c=1

vc(t)vc(t)T , (23)

where c = 1, · · · ,M , δ(c, c(t)) = 1 (c = c(t)), 0 (c �=
c(t)), and x̄c(t)(t) means x̄c(t) for c = c(t). Then N×L
discriminant matrix A is updated:

[type I]

A(t) = A(t− 1) + η

[
B(t)A(t− 1)

− 1
2
B(t)A(t− 1)A(t− 1)T w(t)w(t)TA(t− 1)

− 1
2
A(t− 1)A(t− 1)T w(t)w(t)TB(t)A(t− 1)

]
,

(24)

[type II]

A(t) = A(t− 1) + η

[
B(t)A(t− 1)

− 1
2
A(t− 1)A(t− 1)TB(t)w(t)w(t)TA(t− 1)

− 1
2
A(t− 1)A(t− 1)T w(t)w(t)TB(t)A(t− 1)

]
,

(25)

where the learning coefficient η is a small positive num-
ber.

These updating rules are slightly different from the
previous algorithm

A(t) = A(t− 1) + η

[
B(t)A(t− 1)

− 1
2
B(t)A(t− 1)A(t− 1)T w(t)w(t)TA(t− 1)

− 1
2
w(t)w(t)TA(t− 1)A(t− 1)TB(t)A(t− 1)

]

(26)

in [15]–[17].
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Fig. 4 Face images for simulation: 9 samples of original images and 3 samples of 10×10
reduced images. See Table 1 for details.

Table 1 Setting of the simulation.

task identification of face images
data vector x(t) face images under various illumination conditions

(front view, 256 level gray scale, normalized to [−1,+1])
size of x(t) N = 10× 10 = 100 (pixels)

number of classes to be identified M = 3 (persons)
number of features L = 2 (= number of columns in A)

initial values of elements in A random values from the uniform distribution on [−0.001,+0.001]
regularization coefficient ε = 0.01 (applied only to the original algorithm (28))

procedure of learning Face images for learning is presented in a random order.
procedure of evaluation The ratio of the correct identification is evaluated for face

images which are different from the face images for learning.
number of face images for learning up to 500(images per person)× 3(persons) = 1500
number of face images for evaluation 100(images per person)× 3(persons) = 300

The number L of features is less than or equal to
min(N,M − 1). As for the initial values, tc(0) = 0,
x̄(0) and x̄c(0) are arbitrary vectors, and A(0) is an
arbitrary matrix which satisfies rankA(0) = L.

In (24), (25) and (26), the learning coefficient η
affects the performance of algorithms. In order to ob-
tain fast convergence of the discriminant matrix A(t),
we want to set η as larger as possible. However, if
η is too large, A(t) can diverge. In Sect. 5, it will be
shown that the boundary of “acceptable” η in (24),(25)
is larger than that in (26). Thus, we can obtain fast
convergence by the algorithms (24),(25).

Note that the right hand sides of (24),(25) can be
calculated efficiently in the following manner for the
case M � N .

1. Instead of calculating B explicitly, calculate

BA =
1
M

M∑
c=1

vc
(
vcTA

)
. (27)

2. Calculate AT w and ATBw = (BA)T w.
3. Calculate A(AT w) and A(ATBw).
4. Calculate BAAT wwTA = ((BA)(AT w))(AT w)T

[type I] or AATBwwTA = (AATBw)(AT w)T

[type II], and AAT wwTBA = (AAT w)(ATBw)T .

5. Simulation

5.1 Comparison with Original Online LDA

In this section, performance of online LDA algorithms
is tested for face identification task (Fig. 4). It is ex-
perimentally shown that the presented algorithms are
about two times faster than the original one. Namely,
the presented algorithms attain the same level of per-
formance by half steps of learning compared with the
original one. Type I and II show similar result.

The setting of the simulation is written in Table 1.
In the simulation of the original algorithm, the updat-
ing rule
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Fig. 5 Learning curves of the original algorithm (“orig”) and
the presented algorithms (“new0”: type I, “new”: type II). Up-
per: mean for 100 independent trials. Lower: an example of one
trial. Horizontal axis: number of presented samples. Vertical
axis: percentage of correct identification. Two cases η = 0.01
and η = 0.03 (“large eta”) are shown for each algorithm. The
presented algorithms have an advantage that we can take a large
learning coefficient η so as to obtain fast convergence. Type I and
II show similar result. On the other hand, the original algorithm
is superior with regard to the final ratio of correct identification
after sufficient learning.

A(t)=A(t−1)+η
[
B(t)A(t−1)

−1
2
B(t)A(t−1)A(t−1)T (w(t)w(t)T +εI)A(t−1)

−1
2
(w(t)w(t)T +εI)A(t−1)A(t−1)TB(t)A(t−1)

]

(28)

is used instead of (26), where I is the identity ma-
trix and a regularization coefficient ε is a small positive
number. The term +εI is useful for stabilization of the
algorithm [17].

The result of the simulation is shown in Figs. 5, 6.
The presented algorithms have an advantage that we
can take a larger learning coefficient η so as to obtain
faster convergence. On the other hand, the original
algorithm is superior with regard to the final ratio of

Fig. 6 The ratio of correct identification after t = 300 (left)
and t = 1500 (right) steps of learning. Horizontal axis is the
learning coefficient η. Upper: original algorithm, middle: type I
algorithm, lower: type II algorithm. The five-number summaries
(minimum, first quartile, median, third quartile, and maximum)
for 20 trials are displayed.

correct identification after sufficient learning. This re-
sult suggests that a part of useful information is lost
during “PCA stage” in Sect. 3.1, because the variance
W within classes is out of consideration there.

Combination of the above advantages will be dis-
cussed in Sect. 6.

5.2 Comparison with Other Methods

Next, online LDA methods are compared with other
“online learning” methods: (1) linear filter† (LF) and
(2) three-layered feedforward neural network (NN) with
sigmoid neurons y = (1 + exp(−s))−1 [13]. The same
task as table 1 is used for comparison.

Since we are interested in the case that N is large,
keeping and updating O(N2) variables are unwelcome.
For this reason, we adopt gradient learning method

†In other words, two-layered feedforward neural net-
works with linear neurons.
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Fig. 7 The ratio of correct identification by linear filter, af-
ter t = 1500 steps of learning. Horizontal axis is log10 η. Left:
momentum coefficient µ = 0, right: µ = 0.9. The five-number
summaries (minimum, first quartile, median, third quartile, and
maximum) for 20 trials are displayed.

(backpropagation):

θ(t+ 1) = θ(t) + η∆θ(t), (29)

∆θ(t) = (1− µ)
∂‖z(t)− f(x(t); θ)‖2

∂θ
+ µ∆θ(t− 1), (30)

where θ(t) is the parameters of LF or NN at step t, f =
(f1, · · · , fM ) is the output of LF or NN, η is learning
coefficient and µ is momentum coefficient. The target
output z(t) = (z1(t), · · · , zM (t)) is defined as zc(t) =
δc,c(t). Initial values of θ are generated by Nguyen-
Widrow method [14]. After learning, the guessed class
for x is obtained as ĉ = argmaxc fc(x;θ).

Results are shown in Figs. 7, 8, 9. Neither LF
(Fig. 7) nor NN (Fig. 8) work efficiently. Though
NN has potential ability to attain higher performance
than OLDAs, convergence of NN is unendurably slow
(Fig. 9). This slow convergence is likely to be caused
by high dimensionality of the input space R100.

6. Concluding Remarks

Online LDA algorithms are desired in order to increase
adaptability of LDA. In the present paper, new algo-
rithms of online LDA are proposed. It is experimentally
shown that the new algorithms are about two times
faster than the previously proposed algorithm in terms
of the number of required examples, while the latter
attains better final performance than the former after
sufficient steps of learning. The meaning of new al-
gorithms are also discussed theoretically, and they are
suggested to be corresponding to combination of PCA
and Mahalanobis distance.

A key improvement of the presented algorithm is
the fact that it is robust for choice of the learning co-
efficient η. By choosing a large learning coefficient, we
can accelerate the learning process. A method for au-
tomatic tuning of η is proposed in [20]. However, as for
the result after presentation of many samples, the orig-
inal online LDA algorithm is superior. Thus, we may

Fig. 8 The ratio of correct identification by three-layered feed-
forward neural networks, after t = 1500 steps of learning. Hori-
zontal axis is log10 η. Left: momentum coefficient µ = 0, right:
µ = 0.9. From upper to lower: (number of neurons in the hidden
layer) = 2, 5, 10, 20, 50. The five-number summaries (minimum,
first quartile, median, third quartile, and maximum) for 20 trials
are displayed. In any cases, median of identification ratio is less
than 0.4.

be able to obtain a better performance by combining
them. Namely, the presented algorithm is used only
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Fig. 9 Examples of learning curves for three-layered feedfor-
ward neural networks with 5 neurons in the hidden layer, η = 0.3,
µ = 0. Results of 5 trials are displayed. Since only 1500 samples
are available for learning, they are used repeatedly after t = 1500.
Convergence is much slower compared with online LDA.

Fig. 10 Real-time face recognition system via online LDA.

in early stage. When saturation of the performance is
observed, the algorithm is switched to the original one.

Presently, the authors are constructing a real-time
face recognition system for robot vision (Fig. 10). This
system finds a face in a image and answer the name
of the person in about 240 msec: most of the pro-
cessing time is consumed not in discrimination but in
finding phase (CPU: PentiumII 450MHz × 2, Mem-
ory: 256Mbytes). The previous and new online LDA
algorithms are used in this system.

This work has been partly supported by CREST of
JST (Japan Science and Technology) 279102 and JSPS
(Japan Society for the Promotion of Science) 12750203.
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mation and Sequential Estimation, Nauka, 1968. (in Rus-
sian; translated into Japanese by T. Kitagawa and K.
Tajima, 1983).

[8] T. Kurita and S. Hayamizu, “Gesture recognition using
HLAC features of PARCOR images and HMM based rec-
ognizer,” Proc. 3rd Int. Conference on Automatic Face and
Gesture Recognition, pp.422–427, 1998.

[9] W. Zhao, R. Chellappa, and A. Krishnaswamy, “Discrimi-
nant analysis of principal components for face recognition,”
Proc. 3rd Int. Conference on Automatic Face and Gesture
Recognition, pp.336–341, 1998.

[10] K. Jonsson, J. Matas, J. Kittler, and Y.P. Li, “Learning
support vectors for face verification and recognition,” Proc.
4th Int. Conference on Automatic Face and Gesture Recog-
nition, pp.208–213, 2000.

[11] K. Fukunaga, Statistical Pattern Recognition, Academic
Press, New York, 1989.

[12] E. Oja, H. Ogawa, and Wangviwattana, “Principal com-
ponent analysis by homogeneous neural networks, part I
and part II,” IEICE Trans. Inf. & Syst., vol.E75-D, no.3,
pp.366–381, 1992.

[13] D.E. Rumelhart, J.L. McClelland, and the PDP Research
Group, eds., Parallel Distributed Processing, vols.1 and 2,
Cambridge, The M.I.T. Press, 1986.

[14] D. Nguyen and B. Widrow, “Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights,” Proc. International Joint Conference on
Neural Networks, vol.3, pp.21–26, 1990.

[15] K. Hiraoka and M. Hamahira, “On successive learning type
algorithm for linear discriminant analysis,” IEICE Techni-
cal Report, NC99-73, 1999.

[16] K. Hiraoka, K. Hidai, M. Hamahira, H. Mizoguchi, T.
Shigehara, and T. Mishima, “Derivation of online LDA al-
gorithm and its application for face identification,” Fifth
Robotics Symposia, pp.226–231, 2000.

[17] K. Hiraoka, S. Yoshizawa, K. Hidai, M. Hamahira, H.
Mizoguchi, and T. Mishima, “Convergence analysis of on-
line linear discriminant analysis,” International Joint Con-
ference on Neural Networks (IJCNN), vol.III, pp.387–391,
2000.

[18] K. Hiraoka, K. Hidai, M. Hamahira, H. Mizoguchi, T.
Mishima, and S. Yoshizawa, “Successive learning of linear
discriminant analysis: Sanger-type algorithm,” 15th Inter-
national Conference on Pattern Recognition (ICPR), vol.2,
pp.664–667, 2000.



1440
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.6 JUNE 2001

[19] K. Hiraoka, K. Hidai, H. Mizoguchi, T. Mishima, and S.
Yoshizawa, “Fast algorithm for online linear discriminant
analysis,” Proc. ITC-CSCC’2000, pp.274–277, 2000.

[20] S. Morishita, K. Hiraoka, H. Mizoguchi, and T. Mishima,
“Study on automatic setting method of learning coefficient
in online LDA towards robust convergence,” Proc. 2000
Information and Systems Society Conferences of IEICE,
p.217, 2000.

Appendix: Proofs of Propositions

Proof of proposition 1: If the conditions of the
proposition are satisfied, we obtain dA/dt = AΓ −
1
2AΓ− 1

2AΓ = O ✷

Proof of proposition 2: If the conditions of the
proposition are satisfied, we obtain dA/dt = AΓ −
1
2AΓ

T − 1
2AΓ = O. ✷

Proof of proposition 3: From the condition

dA

dt
= BA− 1

2
BAATWA− 1

2
AATWBA = O,

(A· 1)

we obtain BA(2I − ATWA) = A(ATWBA). Here,
the inverse of the L × L matrix (2I − ATWA) ex-
ists because of the condition that ATWA does not
have an eigenvalue 2. Thus BA = AΓ holds when
Γ = (ATWBA)(2I − ATWA)−1. In addition, putting
BA = AΓ into (A· 1) and multiplying AT from left, we
obtain (ATA)Γ(ATWA−I)+(ATA)(ATWA−I)Γ = O.
This means (14) when rankA = L, because (ATA)−1

then exists. ✷

Proof of proposition 4: From the condition

dA

dt
= BA− 1

2
AATBWA− 1

2
AATWBA = O,

(A· 2)

we obtain BA = A
(
1
2A

T (BW +WB)A
)
. Thus BA =

AΓ holds and Γ is symmetric when Γ = 1
2A

T (BW +
WB)A. In addition, (14) is proved in a similar way as
the proof of Proposition 3 when rankA = L. Now we
introduce a lemma:

Lemma 1: Let Z = (zij) and H = (hij) be square
matrices of same dimension. If ZH +HZ = O and H
is symmetric positive semi-definite, ZH = HZ = O.

✷

(Proof of Lemma: We can assume that H is diago-
nal without loss of generality, by putting QTZQ and
QTHQ as Z ′ and H ′ respectively for a certain orthogo-
nal matrix Q: H = diag(λ1, · · · , λn) and λ1, · · · , λn ≥
0. Then (ZH + HZ)ij = (λi + λj)zij = 0 means
λi = λj = 0 or zij = 0. Therefore, (ZH)ij = λjzij = 0
for all i, j. )
Applying this lemma to (14), we obtain (15) because
Γ is guaranteed to be symmetric positive semi-definite.

This guarantee is derived as follows: Since Γ is symmet-
ric, there exists an orthogonal matrix Q and a diago-
nal matrix D = diag(d1, · · · , dl) such that Γ = QTDQ.
Then, BA′ = A′D, where A′ = AQT . This implies that
d1, · · · , dl are the eigenvalues of B. Since B is symmet-
ric positive semi-definite, d1, · · · , dl ≥ 0. Therefore, Γ
is positive semi-definite.
Finally, if rank(BA) = L, rankΓ must be L since
BA = AΓ. Then Γ−1 exists and ATWA = I is de-
rived from (15). ✷
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