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Abstract

Cortical neurons of behaving animals generate irregular spike sequences, but the sequences generally differ from an entirely random
sequence (Poisson process), and they have temporal correlations (spike auto-correlations). Temporally correlated spike sequences can be
brought about because of incoming synaptic inputs to the neuron, or because of the neuronal integration mechanism. In this paper, we attempt
to determine which is the origin of spike auto-correlations observed in the spiking data recorded from neurons in the prefrontal cortex of a
monkey preserving a cue information in the delay response task experiment. Each incoming input is assumed to be independent from its own
spike events, and the temporal integration in the neuron is assumed to be reset by every spike event. So, the process to spike is assumed to be
divided into two processes: the process independent from its own spikes, which drives the process reset by its own spikes. Under these
assumptions, it is found that the spike-independent process needs to have temporal correlations, through examinations of two kinds of
correlation coefficient of consecutive inter-spike intervals. It is also found that the spike-reset process has little effect on the spike auto-
correlations and the interval distributions. This suggests that the spike auto-correlation does originate in the temporal correlation of incoming
synaptic inputs and the neuronal integration mechanism has little effect on the spike auto-correlation. © 2001 Elsevier Science Ltd. All rights

reserved.

Keywords: Spiking statistics; Single neuron; Temporal coding; Temporally correlated inputs; Prefrontal cortex

1. Introduction

Irregular spike sequences are observed in large regions of
cerebral cortex in vivo (Britten, Shadlen, Newsome &
Movshon, 1993; Shinomoto, Sakai & Funahashi, 1999;
Softky & Koch, 1993; Tomko & Crapper, 1974), while a
cortical neuron under a constant current injection in vitro
generates regular spike sequences (Kaneko, Kang &
Mizuno, 1995; Thomson & Deuchars, 1997). This suggests
that a neuron in vivo receives highly fluctuating synaptic
inputs. When the fluctuation of incoming inputs is large
relative to the mean, spikes are randomly discharged and
the sequence exhibits high irregularity. In fact, a regular
spiking neuron under a highly fluctuating current injection
in vitro generates highly irregular spike sequences (Nowak,
Sanchez-Vives & McCormick, 1997). Highly fluctuated
inputs can be caused by inhibition balanced to excitation
(Shadlen & Newsome, 1994, 1998). Balanced inputs can
be brought about naturally in model networks (Amit &
Brunel, 1997; Tsodyks & Sejnowski, 1995, Vreeswijk &
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Sompolinsky, 1996, 1998), but, taking higher statistics
into account, many spike sequences are far different from
entirely random one (Poisson process), even if the animal is
behaviorally in a steady state (Sakai, Funahashi & Shino-
moto, 1999). That is the spike sequences have temporal
correlations.

Why can such a temporal correlation in a spike sequence
be brought about? A cortical neuron has many presynaptic
neurons; (Braitenberg & Schuz, 1991; Peters, 1987). If the
presynaptic neurons emit spikes independently, then the
incoming inputs have no temporal correlation, even though
each of them generates a temporally correlated spike
sequence. Can the neuron-received uncorrelated inputs
generated temporally correlated spike sequences?

Shinomoto et al. (1999) and Sakai et al. (1999) attempted
to determine whether the simple leaky integrate-and-fire
mechanism statistically reproduces the spiking data
recorded from a monkey prefrontal cortex. They found
that the inputs need to have temporal correlation of the
order of 100 ms so that the leaky integrate-and-fire mechan-
ism might reproduce statistical coefficients of inter-spike
intervals similar to the biological spiking data.

The leaky integrate-and-fire mechanism includes only
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Fig. 1. (A) A set of spike sequences of trials classified by a neuron and a cue
neuron for classified sets by cues.

one dimensional linear integration, but biological neurons
have higher dimensional nonlinear integration mechanisms
(Hodgkin & Huxley, 1952; Koch, 1999). So, there still
remains the possibility that the neuron-received uncorre-
lated inputs can reproduce the temporal correlation
observed in the biological spike sequence. In this paper,
we examine the necessity of temporally correlated inputs
under only the assumption that the integrated variables are
reset by every spike event.

The existence of temporally correlated inputs seems to
imply the existence of temporal codings at the single neuron
level. However, if this is so, the neuron should generate a
spike sequence due to the temporal pattern of inputs.
Accordingly, the spike auto-correlations should exhibit the
reflection of neuronal integration. In this paper, we attempt
to determine whether spike auto-correlations observed in
biological spike sequences exhibit the reflection of neuronal
integration reset by its own spikes.

Now, we summarize the working assumptions. It is
assumed that the spike event process can be described by
two stochastic processes: a spike event occurs due to a
stochastic process reset by every spike event and driven
by another stochastic process independent of spike events.
Under the working assumption, we attempt to determine
which process is the main factor of the temporal correlations
in the biological spike sequences, the ‘spike independent
process’, or the ‘spike reset process’.

This assumption implicitly includes the two further assump-
tions: the inputs incoming process is independent of its own
spikes, and the neuronal integrated variables are reset by its
own spikes. In the present formulation, however, all of the
neuronal variables need not be reset by spike events. Some
of the exceptions can be classified into the inputs, the spike
independent part, in the formulation. We provisionally regard
the spike independent process as the incoming inputs, and the
spike reset process as the neuronal integration.

2. Biological spiking data and auto-correlations

In this paper, we analyze delay period activities of corti-

B
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, for statistical analyses in this paper. (B) Spike auto-correlograms estimated from a

cal neurons in a delay response task experiment by Funaha-
shi and co-workers, whose task paradigm is identical to one
of the varieties in Funahashi, Bruce and Goldman-Rakic
(1989); Goldman-Rakic, Bruce and Funahashi (1990). The
detail of the experiment is shown in Shinomoto et al. (1999).

In the experiment, a monkey is required to preserve a
visual cue information presented in advance during a 3 s
delay period. Iterating the experiment, the spiking data
were obtained from a total of 233 neurons in the prefrontal
cortices of three monkeys. We use only the middle 2 s in the
delay period of 3 s in order to avoid the possible initial and
final transient changes. The 2 s spike sequences are classi-
fied according to the cues and the neurons, and 1864 sets
(233 neurons X eight cues) of spike sequences are obtained.
For reliable statistical analyses, we adopt only the sets
including more than 100 spikes. The data sets containing
more than 100 spikes are 666 of 1864. A set of classified
spike sequences corresponding to a cue and a neuron is
shown in Fig. 1A. Every sequence length, L, is equal to
2 s. The number of sequences, N, varies by different cues,
(six—25 sequences), because cues are selected randomly
trial by trial. In this paper, we do the statistical operations
for such a set of spike sequences.

We can see in Fig. 1A that the spike sequences are highly
irregular. Most of the others also exhibit high irregularity, as
well as this example (Fig. 1A), but many of them differ from
an entirely random sequence (Poisson process) in that they
have temporal correlation. Auto-correlation is often used to
see the temporal correlation in time sequences. Spike auto-
correlation is defined as a function of lag I, (A(HA(z + 1)),
where A(7) is the firing rate defined as the probability of a
spike event per infinitesimal unit time at time f, and the
notation {---) represents a temporal averaging operation:
{f(@®)) = lim,_,,,(1/1) jg f(#)dt. It can be estimated from finite
spiking data as the °‘spike auto-correlogram’, which is
defined as the frequency histogram of events that spikes
are simultaneously in two time windows separated by lag
1. If the spike sequence has no temporal correlation (Poisson
process), then the auto-correlation is equal to the square of
the mean firing rate, (A()A(r + 1)) = (A)>. We estimate the
auto-correlograms from the biological spiking data. Some
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Fig. 2. Normalized moments of auto-correlations, (A, A, A,), estimated from the biological spiking data. A Poisson process gives (A, A1, A;) = (0, 0, 0).

Auto-correlations of most of the data have positive moments.

examples are shown in Fig. 1B. We can see in Fig. 1B that
the biological spike sequences differ from the Poisson
process and that they exhibit positive correlations (larger
than (A)?).

To see about the other data, we define several coefficients
to characterize spike auto-correlation. The auto-correlo-
gram itself largely depends on the width of histogram
time bin. Accordingly, the estimation of an auto-correlo-
gram contains arbitrariness of the analyzer. So, we define
cumulative quantities of auto-correlation with no need of
time bin,

Ay = r pQOACED) )y,
0 (A

Call the A the normalized k-th moment of auto-correlation.
The correlation is not considered to last infinitely, so each of
the moments {A;} has finite value. When a set of N
sequences with length L is given, the moments {A;} are
estimated without use of the explicit auto-correlogram or
histogram bin as follows,

(M Aoty
A J(>l(<A>(<A>—1/L) l)dl

;
= — M,
0<%M (M) = VL)L — 1)

where [;; represents a time lag from the i-th spike to the j-th
spike, [; =t —t;. The M represents the integral range.
Because the sequences have finite length L, the integral
range is required to be also finite, M = L. The factor
(M(A) — 1/L) corresponds to the normalizing factor,
which is revised from ()\)2 for the sake of unbiased estima-
tion. The factor (L — ;) corresponds to the range of aver-
aging time at lag [;;. In the prepared data set, the sequence
length L of each trial is equal to 2 s, and we set the integral
length M as 1s (L=2, M=1). The number of trials, N,
varies with each data set.

The k-th moment A; has the dimension of k-th power of

time. If all of the {A;} are equal to zero, then the sequence
has no correlation, which corresponds to a random spike
sequence (Poisson process). If each A, has positive value,
then the ratio A /A, characterizes the sustaining time scale
of positive correlation. In the case of exponential correla-
tion, (A(DA(t + D)) = (A)? o< exp(—1/s), the ratio Ay, /A, is
exactly equal to the correlation time scale, s.

The values of (A, Aj, A,) estimated from the 666 sets of
biological spiking data are plotted in Fig. 2. The (A, A, A;)
values are positive at most data sets (92.2%: 614 out of 666).
It shows that the biological spike sequences have positive
temporal correlations. It is found by simulations of the Pois-
son process that the differences of the negative Ay, A; or A,
values from O of the Poisson process are not statistically
significant (P > 13%). So, we can say that all of the data
have non-negative auto-correlations. In this paper, we
attempt to determine where the positive auto-correlations
are generated.

3. Process to a spike event

The process to a spike event is described by two
processes: the incoming of input signals to the cell body,
and the temporal integration of the inputs in the neuron. The
incoming inputs can be described by a stochastic process,
which reflects the ensemble activity of the presynaptic
neurons. The inputs are integrated in the neuron as the
membrane potential, membrane properties, ion densities,
and so on. An action potential (spike) is generated at a
condition of the integrated quantities. Accordingly, a spike
event is described by a stochastic process. Since Gerstein
and Mandelbrot (1964), there have been many studies
concerning stochastic spiking processes (Inoue, Sato &
Ricciardi, 1995; Lansky & Radil, 1987; Ricciardi & Sato,
1988; Tuckwell, 1988;).

A cortical neuron has thousands of synaptic contacts
(Braitenberg & Schuz, 1991; Peters, 1987). So, its own
spike has little influence on the incoming inputs, even if
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the network has recurrent connections. Here, the input
incoming process is assumed to be independent from a
spike event. On the other hand, the intra-cellular quantities
are largely influenced by a spike event. An action potential
resets most of the quantities integrated in the neuron. In the
present paper, we assume that the integrated quantities are
all reset at a spike event. It may be possible that some
quantities are not reset by spikes. For example, the
dynamics of [Ca’**] and Ca-dependent channels can have
long time scales and not be reset by an action potential.
However, if the quantities have only little dependencies
on its own spikes, such a type of dynamics can be classified
into the part of ‘incoming inputs’ in the present formulation.
Now, the stochastic spike event process is described by two
processes: a spike event occurs due to a stochastic process
reset by every spike event and driven by another stochastic
process independent from spike events. In this paper, we
attempt to determine which process is the main factor of
the temporal correlations in the biological spike sequences.

We provisionally regard the spike independent process as
the incoming inputs, and the spike reset process as the
neuronal integration.

Assumption 1. The input incoming process is indepen-
dent from its own spike events.

Assumption 2. The integrated quantities in the neuron are
reset at every spike event.

In the case of uncorrelated inputs, temporal correlation in
a spike sequence is generated by only the neuronal integra-
tion mechanism. The integrated quantities in the neuron are
reset at a spike event, so an event after a spike is uncorre-
lated to any event before the spike. This type of stochastic
process is called a ‘renewal process’. A renewal process is
determined by an interval distribution.

In the case that the instantaneous firing rate does not
depend on the integrated quantities in the neuron, and
depends on only the inputs incoming at the moment, the
spike auto-correlation is proportional to the auto-correlation
of incoming inputs. This type of stochastic process is called
a ‘double stochastic Poisson process’. When the inputs are
also uncorrelated, the spike event process corresponds to a
Poisson process.

4. Rejection of uncorrelated inputs

The assumption of uncorrelated inputs corresponds to the
assumption of renewal processes in the present formulation.
In this section, we test whether the renewal processes can
reproduce the spiking statistics of the biological data.

Serial correlations of interval sequence are often used to
test the hypothesis of renewal process (e.g. Tuckwell, 1988).
The correlation coefficient of consecutive intervals, Cor[T],

the serial correlation at lag 1, is defined as,

n—1

> (T = T)Ty = T)

Cor[T] = — ,

n—1

> (1 - 1)

where T represents an inter-spike interval, and {7}, 75, ...}
is the interval sequence. The notation == represents an aver-
aging operation through the interval sequence: T = (1/n) X
>iii T;. Renewal processes give Cor[T] = 0.

The coefficient Cor[7] is enhanced by consecutive long
intervals relative to the mean interval, and cannot well detect
whether short intervals are consecutive. Therefore, we also
define another correlation coefficient of inverses, Cor[1/7],

n—1 R _
S (T, — TTY(UTys, — UT)
Cor[1/T] = =

n—1

S (UT; — TT)?

Renewal processes give Cor[1/T] = 0, as well as Cor[7T] = 0.
The coefficient Cor[1/7] is enhanced by consecutive short
intervals, so it is available to detect burst-like spike patterns.

The two correlation coefficients estimated from the 666
data sets of spike sequences are plotted in the (Cor[T],
Cor[1/T]) planes in Fig. 3A. Each dot corresponds to a set
of spike sequences classified by a particular neuron and a
particular cue position. The coefficient values are widely
scattered and some of them exhibit anomalously large posi-
tive correlations by means of Cor[7] or Cor[1/T], while both
correlation coefficients are expected to be zero with the
assumption of uncorrelated inputs. Practical experiments,
however, do not provide us with infinite length of spike
sequence, so we must test whether these serial connections
are statistically significant or not.

The standard #-test is often used for the correlation coeffi-
cient, but it is based on the assumption of independent
normal distributions. The inter-spike interval distributions
and its inverse distributions are, however, both far different
from a normal distribution. Therefore, the standard ¢-test is
not suitable in the present case. For this reason, we use a
random sampling simulation to calculate the sample distri-
butions of Cor[7] and Cor[1/T]. About each data set, we
obtain a set of sample intervals, {7}, T5, ..., T,}, from a
long spike sequence serially linked with 2 s sequences
from trial to trial. We select an interval randomly from the
interval set {7,}, and arrange this sample interval serially.
Iterating this operation, a sample spike sequence is obtained.
Then, we divide the sequence into trials of 2 s sequences. A
sample pair of (Cor[T], Cor[1/T]) is obtained by calculating
in the same way from a sample set containing the same
number of trials. Iterating these operations 10,000 times,
we obtained the sample distributions of Cor[7] and
Cor[1/T]. The significance (or P-value) of a Cor[7] value
is defined as the ratio of Cor[7] samples outside of the
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Fig. 3. Rejection of renewal process by two serial correlation coefficients. (A) The two serial correlation coefficients (Cor[77], Cor[1/T]) estimated from the 666 data
sets of spike sequences. (B) The significances of Cor[7] and Cor[1/7] calculated by random sampling simulations under the null hypothesis of renewal process. Dots
corresponding to the 666 data sets are plotted on log-scale plane. The upper side corresponds to Cor[1/7] > 0, the lower side to Cor[T] < 0, the right hand to
Cor[T] > 0, and the left hand to Cor[7] < 0. The four dashed lines represent 0.5% one-sided significance lines on both sides of the two coefficients.

Cor[T] value. The pairs of Cor[T]-significance and Cor[1/
T]-significance are plotted as dots on log-scale plane in Fig.
3B. Four dashed lines represent 0.5% one-sided significance
lines on both sides of the two coefficients. Many dots are
outside of the dashed lines on the positive sides. Dots
outside of the dashed line are rejected at the 0.5% signifi-
cance level. The ratio of data sets rejected at the 0.5% one-
sided significance level is, respectively, 22.8% (152/666) on
the side of positive Cor[1/7] (ratio of dots on the right side
of the vertical dashed line), 9.16% (61/666) on the side of
positive Cor[1/T] (ratio of dots on the upper side of the
horizontal dashed line), 0.30% (2/666) in the side of nega-
tive Cor[7] (ratio of dots on the left side of the vertical
dashed line), and 0.15% (1/666) on the side of negative
Cor[1/T] (ratio of dots on the lower side of the horizontal
dashed line). The ratio of rejected data sets on the side of
negative correlation is always below any significance level
in the range 0—5%. Thus, negative values are not significant
in the range of statistical fluctuation. Positive sides are
clearly significant, and the ratio of data sets rejected at the
0.5% level by Cor[T] or Cor[1/T] is 27.4% (183/666) (ratio
of dots on the region of left or upper side of the dashed
lines).

The results lead to the conclusion that the assumption of
renewal process is rejected. The spike independent part of
spike event processes needs to have positive temporal corre-
lation to reproduce the biological spiking data statistically.
It suggests that the incoming inputs need to have temporal
correlation.

The inconsistency is mainly due not to Cor[1/T], but to
Cor[T]. It suggests the necessity of long time scale correla-
tion relative to the mean interval, and it also suggests that
the inconsistency does not originate in bursting neurons.

5. Effects of neuronal integration

It is found that the incoming inputs need to have temporal

correlation in order to reproduce the temporal correlations
observed in the biological spike sequences. In the present
section, we examine whether the neuronal integrations have
an effect on the temporal correlations observed in the bio-
logical spike sequences.

When the spike auto-correlation is generated by only the
neuronal integration, namely in the case of a renewal
process, there is one-to-one correspondence between the
inter-spike interval distribution and the spike auto-correla-
tion. The auto-correlation is described as an infinite series of
convolutions of the interval distribution. The exponential
distribution leads to an uncorrelated spike sequence (Pois-
son process, dashed lines in Fig. 4), a distribution biased to
short and long intervals leads to a positive correlation
decaying to zero (Fig. 4A), a distribution biased to a little
shorter than the mean interval leads to a negative correlation
decaying to zero (Fig. 4B), and a normal-like distribution
leads to an oscillatory auto-correlation. Some examples of
the correspondence are shown in Fig. 4. Renewal processes
can generate any type of auto-correlations, but there is a
restriction in the relationship with the interval distribution.
Therefore, the characteristic time scales of auto-correlations
are proportional to the mean intervals, as long as the shapes
of the interval distributions are the same.

Property (by neuronal integration). The characteristic
time scales of auto-correlation, A;/A,_;, are proportional
to the mean inter-spike intervals, T

Ak/Ak+1 oc T.

With the temporally correlated inputs, the spike auto-corre-
lation exhibits a compound reflection of the input correla-
tion and the integration mechanism. It is not easy to separate
them from each other, but the time scales of auto-correlation
must have a positive correlation to the mean intervals, as
long as the shapes of interval distributions are similar. To
see properties of distribution shapes, we estimate statistical
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degree 2) leads to a negative correlation at short lag, and decaying to zero.

0.3s

~02s -
T
0.1s -

0s

Fig. 5. Relationships between the mean interval and the shape of interval distribution. Statistical coefficients of intervals characterize the shape of interval
distribution. The coefficient of variation (CV), and the skewness coefficient (SK) have no systematic relationships to the mean interval (7).

coefficients of inter-spike intervals: the coefficient of varia-
tion (CV), the skewness coefficient (SK), defined as:

cv= VI -T°

= T ,

. /ms

The coefficients are dimensionless and represent properties
of the distribution shape independently from its time scale.
Fig. 5 shows the relations to the mean intervals, (CV, T) and
(SK, T), estimated from the biological spiking data. We can
see no systematic relationships between the mean interval
and CV or SK. It suggests that the shape of the interval
distribution is independent from the mean interval. There-
fore, if the neuronal integration mechanisms have effects on
the spike auto-correlations in the majority of the neurons,
then the auto-correlation time scales must have a positive
correlation to the mean intervals.

The auto-correlation time scale is estimated as the ratio of

SK =

the normalized moments of auto-correlation, Ay, /A, if
A+ and Ay are positive. Most of the data sets have positive
Ag,Aq, A, values (92.2%: 614/666, in Section 2). We exam-
ine only the 614 data sets. Then, the sustaining time scales
of these correlations can be estimated by A;/A; or A,/A;
from the 614 data sets. The relation between the auto-corre-
logram time scales and the mean intervals is shown in Fig. 6.
We can see no positive correlation in either: (7,A,/A,) or
(T,A,/A)). It is found that the biological spike auto-correla-
tions do not exhibit the reflection of the integration reset by
spikes, at least in the majority of the neurons. It suggests that
the neuronal integration mechanism has little effect on the
output spike sequences.

6. Discussion

We analyze the spiking data recorded from neurons in the
prefrontal cortex of a monkey preserving a cue information
in the delay response task experiment. The spike sequences
exhibit temporal correlations. If spike events occur due to a
stochastic process reset by every spike event and driven by
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Fig. 6. Relationships between the auto-correlation time scale and the mean interval. Ratios of normalized moments of auto-correlation, Ay /Ay, characterize
the time scale of the auto-correlation. The ratios A;/A, and A,/A; have no positive correlations to the mean intervals.

another stochastic process independent from spike events,
the spike independent process is found to be temporally
correlated, and the spike reset process is found to have little
effect on the spike auto-correlation. We can see in Fig. 6 that
the correlation time scales are of the order of 100 ms, so the
spike independent process needs to have temporal correla-
tions of the order of 100 ms. In the present paper, we let the
two processes correspond, respectively, to the incoming
inputs and the neuronal integration mechanism, because
its own spikes are considered to have little effect on the
incoming inputs, and reset most of the integrated quantities
in the neuron. So, it is suggested that the incoming inputs
need to have temporal correlations of the order of 100 ms,
and that the neuronal integration mechanisms have little
effect on the spike sequences.

However, there can be an exception. For example, the
dynamics of [Ca®"] or Ca-dependent channels can have
long time scales and not be reset by an action potential.
Metabolic phenomena also have long time scale and are
not reset by an action potential. In the present formulation,
however, they can be classified into the part of ‘incoming
inputs’. The present analysis gives a suggestion that
temporal correlation of the order of 100 ms must be in
quantities that are not reset by a spike. If there are dynamics
influenced, but not reset, by an action potential, it is not easy
to divide the effects. The effects of this type of dynamics on
the present analysis can be partly examined by simulations
of realistic neuron models with multiple channels. We have
to examine the consistency of the present analysis by the
realistic neuron model simulations in the future.

Temporal correlation in a spike sequence is suggested to
reflect the temporal correlation in the incoming inputs. It
suggests that no temporal operations due to temporal signal
patterns are performed at least in the single neuron level,
while a single neuron has the ability of performing complex
temporal operations (Matsumoto, Aihara, Hanyu, Takaha-
shi, Yoshizawa & Nagumo, 1987). If the temporal integra-
tion in a neuron really has little functional means, it is

possible to regard a cortical neuron as a unit to perform
statistical operations through the presynaptic neurons at
each instance rather than temporal operations on the history
of synaptic inputs. This type of unit shares a common
mechanism with the ‘coincidence detector’ advanced by
Abeles (1982, 1991), and others (Fujii, Ito, Aihara, Ichinose
& Tsukada, 1996; Koch, 1997; Softky & Koch, 1993; Wata-
nabe, Aihara & Kondo, 1998). The temporal integration is
neglected in both, but the term ‘coincidence detector’ has
the additional means of the role to detect a specific temporal
pattern of coincidently incoming inputs. It implies the
temporal coding represented by the ensemble of neurons.
It is an open problem whether such a type of temporal
coding is used in a cortex.
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