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Abstract

Inter-spike interval statistics are often used to char-
acterize spike sequences. Fach of lower order statis-
tical coefficients itself characterize a spike sequence
well. But it is hard to understand the meanings of
their combinations. The interval histogram can partly
make 1t clear, but in practical experiments, we can not
often obtain enough length of data to estimate the his-
togram. Moreover, interval statistics do not directly
give us an information about the mechanism of spike
event generation. In the present study, we attempt to
interpret the combination of inter-spike interval statis-
tics in comparison with a simple stochastic process de-
signed to describe spike events. We define the Markov
switching Poisson process, where the state switches in
Markov manner between two Poisson processes (one
is active state, and the other inactive) at each spike
event. Through the Markov switching Poisson pro-
cess, we wnterpret the differences in interval statistics
of the biological spiking data between middle temporal
(MT) area and prefrontal (PF) area of monkey cortez.
Most MT data are found to be interpreted as spike
sequences whose balance of staying time is biased to
inactive state. It is also found that the mean staying
time relative to the mean inter-spike interval is shorter
than that of typical PF data. The staying time scale
can be considered as time scale of temporal correlation
wn the incoming synaptic inputs. This implies that the
differences between the two area originates in the time
scales of synaptic inputs correlations.

1 Introduction

Inter-spike interval statistics
characterize spike sequences.

are often wused to
The coefficient of
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variation (CV) of intervals characterize spiking
irregularity[1][2]. The skewness coefficient (SK) of
intervals characterize the degree of anomalous long
intervals[3][4][5], which is one of the reflects of long
time scale correlation[6]. The two statistical coeffi-
cients are described by the moments up to the third
order. The correlation coefficient (COR) of consecu-
tive intervals characterize serial correlation of inter-
val sequence[6][7]. These statistical coefficients do not
characterize all of the properties of the spike sequence.
If a biological spike sequence consists of a very large
number of intervals, then we can employ higher order
statistical coefficients in addition to these coefficients,
or serial correlations at larger lag than 1, or we can
construct a detailed interval distribution function as a
histogram. However, an available biological sequence
does not consist so large number of intervals. The re-
liabilities of statistics, which depend on the statistical
fluctuation for finite data, generally become lower as
the order becomes higher. So higher order statistics
are not practical.

Spike count statistics also contain reliable low-
order statistics. Physiologist often use spike fre-
quencies corresponding to the first order statistics
of spike counts.
spike counts are sometimes used to characterize
the spiking variabilities[8][9][10] and other spiking
properties[11][12]. But the width of time window to
count spikes has significant effect on statistics values
of spike counts. Tt is difficult to deal with the effects
of window width theoretically, except for the first or-
der one. So more than second order statistics of spike

The second order statistics of

counts are not easy to use.

Accordingly we take up low order statistics of inter-

spike intervals, CV, SK, and COR. Each of the coeffi-
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Figure 1: Each dot or circle represents the statistical coefficients (CV, SK) values (in left plot) and (COR,
SK) values (in right plot) estimated from biological spike sequences. A large circle represents (CV, SK, COR)
estimated from MT data, and a small dot represents that of PF data. The values (CV, SK, COR) = (1, 2, 0) are

given by the Poisson process (random sequence).

clents characterizes a spike sequence. But they do not
directly give us an information about the mechanism
of spike event generation. There are a large number
of trials to determine the conditions that a single neu-
ron model can reproduce interval statistics of cortical
neurons [1] [2] [5] [6] . But it is essentially ill-posed
inverse problem, so any conclusions are specific to an
assumed model. If a complex model is assumed, it is
difficult to catch the essence of the problem. For the
sake of interpretation of inter-spike interval statistics,
it 1s desirable that the assumed model is as simple
as possible. It is not necessary to try biological real-
ity. So we assume a simple stochastic process designed
to describe spike events, free from the spiking mecha-
nisms of biological neurons.

2 Inter-spike interval statistics

We take up three statistical coefficients of inter-
spike intervals characterizing a spike sequence: the co-
efficient of variation CV, the skewness coefficient SK,
and the correlation coefficient of consecutive intervals

COR, defined as,

(T —T)?
CvV = -
T
_T\3
SK = (T-T7) T
(r=T)

(T; =T)(Tiy1 = T)

COR = L
(I'=1)
where 1 represents an inter-spike interval, and
{,Ts,..,T;, ..., T} is an interval sequence. The no-
tation T+~ represents an averaging operation through

an interval sequence: T'= L """ | 7. The coefficient
of variation CV is a measure of variability of intervals,
which shows a measure of spiking irregularity[1]. The
skewness coefficient SK is a measure of the asymme-
try of the interval distribution, which shows a measure
of anomalous long intervals[3][5]. The correlation co-
efficient COR 1is a serial correlation coefficient at lag
1 in an interval sequence, which shows a measure of
temporal correlation[6][7].

In this paper, we examine two kinds of spiking data
recorded from neurons in two area of monkey cor-
tices: the middle temporal (MT) area and the pre-
frontal(PF) area.

The MT data are obtained from an anesthetized
monkey in front of a cathode-ray tube[13]. Ran-
dom dots displayed in the whole screen are flowing
for 10 sec in a constant direction of 12 directions.
MT neurons exhibit sustained activity during random
dots flowing, and the level of the sustained spike rate
largely depends on the flow direction. We use only
the final 9 sec of 10 sec in order to avoid the possi-
ble initial transient changes. The 240 spike sequences
are obtained from 20 neurons (20 neurons x 12 di-
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Figure 2: Schematic representation of Markov switch-
ing Poisson process.

rections). For reliable statistical analyses, we adopt
only the sets including more than 100 spikes. The 74
sequences of 240 contain more than 100 spikes.

The PF(prefrontal) data are obtained through a de-
lay response task experiment [5][14]. In the experi-
ment, a rhesus monkey is required to make a specific
saccade eye movement in response to a visual cue stim-
ulus which is presented in advance to a 3 second delay
period during which cue stimulus is absent. PF neu-
rons exhibit sustained activity during the delay period.
In some neurons, the level of the sustained spike rate
largely depends on the choice of the cue stimuli. We
use only the middle 2 sec in the delay period of 3 sec
in order to avoid the possible initial and final tran-
sient changes. The 2 sec spike sequences are classified
according to the cues and the neurons, and 1864 sets
(233 neurons X 8 cues) of spike sequences are obtained.
Each 2 sec spike sequence includes too few spikes to
estimate the statistical coefficients. So we link spike
sequences belonging to one set one trial to the next,
and we obtain a long spike sequence from one set. We
analyze the 666 sequences containing more than 100
spikes, for reliable statistical analyses.

Figure 1 shows the statistical coefficients (CV, SK,
COR) estimated from MT and PF data. A large circle
represents (CV, SK, COR) estimated from MT data,
and a small dot represents that of PF data. There
are slight differences between MT and PF data. The
MT data are biased to small SK relatively to the CV,
while many PF data exhibit large SKs relatively to
their CVs, The M'T data are biased to small or nega-
tive COR, while the PF data are biased to large posi-
tive COR. In this paper, we attempt to interpret these
differences in comparison with a simple stochastic pro-
cess designed to describe the spike event generation.

3 Markov switching Poisson process
Each of the statistical coefficients, CV, SK, and
COR shows us properties of a spike sequence very well.
But it is difficult to understand the meanings of the
combination of them. They do not directly show in-
formations about the mechanisms of spike event gen-

eration. Therefore, we assume a simple spike event
process to reproduce the inter-spike interval statistics
(CV, SK, COR)s of cortical neurons. The statistics
(CV, SK, COR) are mapped to the model parameters
of the spike event process, values of which can give
us some informations about spike event generation. It
is desirable for the sake of catching the essence that
the assumed model is as simple as possible. The most
simple spike event process is Poisson process. It is the
unique uncorrelated spike event process without need
of any hidden variables. In Poisson process, a spike
event occurs at random due to the constant rate A.
Poisson process gives an exponential interval distribu-
tion, and the statistical coefficients (CV, SK, COR)
= (1, 2, 0). We can see in Figure 1 that many of the
biological (CV, SK, COR)s are around that of Poisson
process (1,2,0), but not a few data exhibit (CV, SK,
COR) values far different from that of Poisson pro-
cess. The differences are found to be significant[6]. So
now we need a higher class of spike event processes.

In this paper, we assume the Markov switching
Poisson process. At each moment, a spike event oc-
curs due to a Poisson process, but the event rate A can
switch between 2 values, Ao, A1 (Ag < A1), due to con-
stant probabilities at every spike events. Schematic
representation is in Figure 2. The transition proba-
bility wqg is the probability of switching from the in-
active state Ag to the active state Ay, and w; is the
probability of switching from the active state A; to
the inactive state Ag. The Markov switching Poisson
process is simple and easy for consideration, though
it can describe large class of spike event processes, for
instance, bursting-like spike patterns, or temporally
correlated spike sequences with long time scale. Tt is
a kind of the modulated Poisson processes, but does
not belong to the doubly stochastic Poisson process
(Cox process)[16]. In the doubly stochastic Poisson
process, the spike rate varies independently from its
spike events, while the rate changes of Markov switch-
ing Poisson process depend strongly on its spike event.

The model has 4 parameters, Ag, A1, wg, w1. The
model can be also characterized by 4 time scales: the
mean intervals of each state, 7, 71, and the mean stay-
ing time in each state, sqg, s1, described by the follow-
ings,

To = 1/)\0 s
n = I/Al s

so = 1/wolo ,
S1 = 1/’([)1)\1 .

These 4 parameters have one-to-one correspondence to
the interval statistics (CV, SK, COR) and the mean
interval, T, in addition. They satisfy the following



equations,
so + 51 - T,
so/T0+s1/m

SoTo + S171 CViql —
sg + s1 - 2 ’

sot¢ +s17¢  SK CV34+3CVi41 7
so + s1 6 ’
(n—m)? _ CV’(1-2COR) -1 -

so + s1 2 '

The solution (79, 71, so,81) for (T, CV,SK, COR) ex-
ists when the statistics satisfy the following inequality,

(CV2 4 1)2 _ SK CV? 4+3CVi41
1 6 ’

1<

1< CV?*(1—2COR) .

The whole grey regions in Figure 3a represent the pro-
jection of the conditions on CV-SK plane.

4 Projection to the model parameters

Now, we try to interpret the interval statistics (CV,
SK, COR) through the Markov switching Poisson pro-
cess. One of the characteristic differences in (CV, SK,
COR) between MT data and PF data is the value of
SK relative to CV. So we define two CV-SK regions
(see Figure 3a),

Region A: SK —2>6(CV—1) (dark gray) ,
Region B: SK —2<3(CV—1) (light gray) .
The region A belongs to characteristic PF data, and
the region B belongs to characteristic M'T data. An-
other characteristic difference between MT data and
PF data is the COR value. So we use 4 slices at
COR = —1,0,1,2 in (CV, SK, COR) space. The 8
slices (2 region x 4 COR values) are mapped to the
parameters of the Markov switching Poisson process.

The region A and B are projected on the plane of
the staying time balance, s1/(so + s1), and the stay-
ing time scale, (sq+s1)/7T (Figure 3b). The difference
between the region A and B can be seen well by the
balance in the mean staying time of active and in-
active state, s1/(so + s1). The region A, with large
SK relative to CV, appears to be biased to the active
state by means of staying time. This kind of spike se-
quences can be generated if its state is mainly active
and sometimes becomes inactive. On the other hand,
the region B, with small SK relative to CV, appears to
be biased to the inactive state. This kind of spike se-
quences can be generated if its state i1s mainly inactive

and sometimes becomes active. They may sometimes
look like bursting pattern.

The differences also appear in the staying time scale
over the mean inter-spike interval, (sq + s1)/T. Spike
sequences belonging to the region A are staying in each
state longer than those of the region B, when COR is
positive. In other words, spike sequences with larger
SK relative to CV have longer scale temporal correla-
tions, when COR is positive. We can also see in Figure
3b a trivial result that the larger value its COR has,
the longer it is staying in each state.

The biological (T, CV, SK, COR)s are mapped on
the same plane in Figure 3c. Each circle and dot corre-
spond respectively to the statistics (T, CV, SK, COR)
estimated from the MT data and the PF data. We can
see that MT data are apt to have parameters that the
staying time balance is biased to inactive state and
correlation time scale is relatively small.

Summary of results:

1. Large SK value relative to CV means that the
balance of staying time is biased to the active
state.

2. Large SK or large COR means that the staying
time 1s long relative to the mean inter-spike in-
terval.

3. The MT data exhibit inactive-biased balances
and short staying time scale relatively to the PF
data

5 Discussion

If the state changes in the model are considered
to correspond to level changes of incoming synaptic
inputs to the neuron, then the staying time scale is in-
terpreted as correlation time scale of incoming inputs,
and the staying time balance represents the difference
in distribution shapes of input rate. The properties
of incoming inputs reflect collective activities of pre-
synaptic neurons. We can see the differences in the
staying time balance and staying time scale between
the MT data and the PF data. In both cases, ex-
perimental conditions are constant during recording,
by means of either stimulus or behavior. So the area
differences may imply the difference in structure prop-
erties of cortical networks or in current states of neu-
ronal assembly.

There 1s also possibility that the state changes oc-
cur in a single neuron. A typical case can be see in a
bursting neuron (see [17] for review). The first spike
leads to a bursting state and back to a normal state
in about a few 10 msec. We can not find such a short



d b COR=0.2

20
8 50+ 51
—= — 10 & :
6 T
SK 0 !
4 20 COR=0.1 |
2 so + 81
— 10 - i
0 : ! T
0 1 2 3
cV 0
20 COR=0
Sg+ s
0T 0 -
C T
30 — : T o 0
o o]
-. . .. '. o '. 20 COR O 1
s s IR P A A
T I S s0+ 51
T :O‘ .'o . : .-" ...06 st | —_—— 10
Ky :ﬁs- O:: . O, T
0 : WReeY 0
inactive s active inactive active
So + S1 S0 -|— S1

Figure 3: a: The definition of two characteristic CV-SK region: Region A (dark gray) and Region B (light gray).
The whole region of gray parts can be reproduced by the Markov switching Poisson process. b: The projection on
the model parameter plane of the staying time balance, s; /(s +s1), and the staying time ratio, (so+s1)/7, of the
regions corresponding to the region A and the region B defined in a. The 4 plots differ in COR, value, respectively
COR = 2,1,0,—1. c¢: The projection on the same plane as b of the statistics (CV, SK, COR) estimated from the
biological data. The circles represent those of the MT data and the dots represent those of the PF data.
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