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Abstract— A novel variation of online linear dis-
criminant analysis (OLDA) is proposed based on an
one-parameter family of nonlinear dynamics. Both
previously proposed dynamics for OLDA and Oja’s
dynamics for principal component analysis are special
cases in this family. With regard to this family, fixed-
points and their stability are analysed. The depen-
dence of discrimination performance on the parameter
is also studied experimentally.

1. Introduction

Linear discriminant analysis (LDA) has been applied
extensively, e.g. for face identification [8][9]. However,
LDA is poor at adaptivity. This is because LDA is
a batch learning algorithm. Indeed, we have to re-
calculate the discrimination matrix A every time when
we add new data to update the identification system.
This calculation is heavy for high dimensional data
such as face images.

Recently, the authors have proposed an online ver-
sion of LDA [11], which is referred to online LDA
(OLDA). By OLDA, the face identification system can
be updated with low computational cost when new ad-
ditional images are presented. Hence OLDA has the
ability of adaptation to the change of environment.
OLDA also has an advantage that huge matrices never
appear in its calculation.

Though iterative algorithms have been proposed!
for neural network based LDA [6][5], they are not suf-
ficiently “online”. Since those algorithms keep n? x n?
matrices when the image sise is n x n, they require
O(n*) time for one step updating and O(n*) memory.
In contrast to [6][5], our OLDA algorithm requires only
O(n’M L) time for ome step updating and O(n?M)
memory, where M and L are the number of classes
and features, respectively. Note that n? > M > L in
typical cases of face identification tasks.

In the present paper, we will propose a novel OLDA
algorithm based on an one-parameter family of matrix

!The original algorithm in [6] is & batch learning. However,
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dynamics. The first algorithm [11] is a special case
of it. Moreover, Oja’s dynamics for online principal
component analysis (PCA) can be viewed as another
special case of it.

II. One-parameter family of matrix dynamies

To determine the discrimination matrix 4 in LDA, we
have to solve a generalized eigenvalue problem. Let
B and W be the N x N variance matrices “between
classes” and “within classes” respectively. Then, we
have to find an N x L matrix A, and an L x L sym-
metric matrix I' which satisfy

BAwor = WAaT,

AT WAy = 1, M

ﬁhere I is the identity matrix.

In order to obtain the solution A, iteratively, the
following matrix dynamics is discussed in the present
study:

%A(t) = BA(t) — aBA(t)A(t)T W A(t)
~(1- )WAWAWTBAR), (2)
where a € R is a parameter.

III. Main theorems

With regard to the one-parameter family of matrix
dynamics (2), the following theorems are proved.

Theorem 1 All the solutions of (1) are fizedpoints of
(2).

Theorem 2 Suppose that rankB > L and a = 0.
Then all the stable firedpoints of (2) are solutions of

(1).

Theorem 3 Suppose that rankB > L and a > 0, a #
1. If A is a stable firedpoint of (2) and A is not a
of (1), the eigenvalues wy,--- ,wy, of ATW A

les#a,

we can easily modify it to an iterative I g by replacing the
lculation of the standard deviation in [5] with an iterative one.

must satisfywy =1 orwy > 1/a (k=1,--.,L).
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Theorem 1 suggests that the dynamics (2) can be
used to solve the generalized eigenvalue problem (1).
Theorem 2 shows that there is no “spurious” solution
when a = 0. Theorem 3 shows that the spurious so-
lutions exists only in a region which is “far” from O
compared with the “true” solutions, when 0 < a < 1.
This is because the true solutions satisfy ATWA = I.

Thus, as for spurious solutions, smaller « is better.
Especially, a = 0 is a direct extension of Qja’s dy-
namics for online PCA [1] and this dynamics has no
spurious solution.

On the other hand, as for convergence speed, it is
experimentally observed that positive a is superior.
This will be discussed later.

IV. Derived OLDA algorithm

From the dynamics (2), following OLDA algorithm is
derived.

At every time step t = 1,2,3,.--, a new
pair (&(t),c(t)) is presented, where ®(t) is an N-
dimensional data vector, c(t) € {1,---, M} is the class
of 2(t), and M is the number of classes. Based on this
pair, auxiliary variables and the N x L discrimination
matrix A are updated as follows:

) = (- 1) +d(e (1)), o
() = (1—%)5(t—-1)+%z(t), (4)
2°(t) =
{(1-‘_355) =D+ @ge) (=)
2t —1) (¢ # c()),
vi(t) = &°(t) - 3(t), (6)
w(t) = 2(t)-20)), ()
¥t = AE-1)Te(), (8)
z(t) = Al-1)Tw(), (9)
Ft) = - S @)y (t)T 10
® = ygv()y(), (10)
1 M
9t) = 32 v® e @), (11
c=1

A(t) = At — 1) +n[F(t) - aF(2)2(t)2(5)"
— (1 - Q)w(t)g(t)T — acF(t) (At — )T A(t - 1))
~ (1 - a)ea(t — 1) (A(t - 1T F@))), (12)
where the parameter a is corresponding to a in (2),
the learning coefficient 7 is a small positive number,

and the regularization coefficient e is also a small pos-
itive number. The number L of features is less than or

equal to min(N, M — 1). Note that the covariance ma-
trix W(t) = 1 3, w(r)w(r)T within classes is re-
placed with the instantaneous value w(t)w(t)T. Such
replacement is justified by the theory of stochastic ap-
proximation (7). As for the initial values, t°(0) = 0,
2(0) and 2°(0) are arbitrary vectors, and A(0) is an
arbitrary matrix which satisfies rank A(0) = L.

V. Experimental results

We have applied the above OLDA algorithm to face
image identification for 4 persons. The performance
is evaluated for test samples after ¢ = 400 steps of
iterations (Fig. 1).

ratio of correct
identification (%)

0.00

Figure 1: Performance of the proposed method for
each 7 and a. Stability is improved around a = 1.

It is experimentally shown that stability for large
learning coefficient is improved around a = 1. More-
over, the problem of spurious solutions turns out to
be negligible if we take an initial matrix A(0) near the
zero matrix O.

VI. Discussion

The reason of the slow convergence for a < 0 is not
clearly understood at now. This point must be studied
further. A key will be the fact that w(t)g(t)? has
much larger variance than F(t)z(t)z(t)¥ in (12).

Another unclear point of the present study is the
question whether the dynamics (2) can be derived from
potential functions. The authors have only partial re-
sults. For the case a = 1/2, (2) is derived as

day;/dt (1/2)(04(A)/0a;;5), (13)
#4) = T [ATBA (1 - %ATWA)] . (14)

For the case a = 0, (2) is derived similarly by another
potential function

¥(A) =logdet[ATBA] — Tx[ATWA]  (15)
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together with a metric

(AA;, AAg) s = TY[AATAA(ATBA)™Y).  (16)
Note that Oja’s dynamics [1] is a special case of (2)
witha=0and W=1I.

VII. Conclusion

A novel variation of online linear discriminant analysis
(OLDA) is proposed based on an one-parameter fam-
ily of nonlinear dynamics. Both previously proposed
dynamics for OLDA and Oja’s dynamics for principal
component analysis are special cases in this family.

It is theoretically shown that (a) when the parame-
ter a = 0, no “spurious solution” exists, and (b) when
0 < a < 1, spurious solutions exists only in a region
which is “far” from O compared with the “true” solu-
tions. On the other hand, it is experimentally shown
that stability for large learning coefficient is improved
around a = 1.
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Appendix: Proofs of theorems

Proof of theorem 1: Trivial. ]

Lemma 1 Let Jp = ATBA and Jw = ATWA. Then
JBJW = 'IWJB =Jg 1fA is aﬁzedpoint Of (2).

Proof: Multiplying A7 from left of (2), we obtain
aJg(I-Jw)+(1-a)(I-Jw)Jg =0.

Then, by adding (17) and the transpose of (17), we
obtain

(17

Je(I-Jw)+ (I~ Jw)Jeg = 0. (18)

This means Jp(I — Jw) = (I — Jw)JB = O, because
both Jg and I — Ji are symmetric. Thus JgJw =
u

Corollary 1 By rotating the coordinate system in
RZ, we can assume

Jp = diag(fy,---,PL), (19)
Jw = diag(wy, - -+ ,wg), (20)
Pr>--->PBx >0, (21)
Bry1=-=pL =0, (22)
w=-=wg =1, (23)
Wil > 2w >0, (24)

without loss of generality.



Lemma 2 The following conditions are equivalent
when a £ 1:

1. A is a fizedpoint of (2).
2. A satisfies

BA=WAIg, (25)
Jg =JwJp = Jelw. (26)

Proof: (<) Trivial. (=) Let A = (ay,---,ar).
When A is a fixedpoint, lemma 1 and its corollary hold.
Then, from (2), (BA~WAJg)(I —alJw) = O. Thas,
Bay = fyWa, if wy # 1/a. Moreover, Ba,, = ByWa,,
also holds if wy = 1/a # 1, because B = 0 in this
case. Note that Bay = 0 and 8, = a:'Ba,, = 0 are
equivalent since B is symmetric.

[ ]

Proof of theorem 2 and 3: Let A be a “spurious”
solution, namely, 4 is a fixedpoint of (2) and 4 is not
a solution of (1). Then lemma 1 and its corollary hold.

Now we can take a basis {e1,---,en}

which satisfies Be; = LuWey, A =
(eh"' )eL)di’ag(vul)"' yVWL),s and ez'weh' =
1(k = k'),0(k # k'). Suppose that wy = --- =wg =1
and wi 41, -+ ,wr # 1. For simplicity of description,

we only show here a discussion for the case that
B1,---,Bn are different each other except that
Brxt1=---BL =0.

Let A = {AC | Cis an arbitrary L x L matrix}.
Note that there exists a neighborhood U of A such
that all the fixedpoints in U belong to .A. In order to
observe the distance between A(t) and A, we define
the metric (F,G) = TrFTG.

Let AA(t) = A(t)— A and AA(0) = (0,---,0,ceq),
where H satisfies L + 1 < H < N and 8y > 0. The
existence of such H is guaranteed from assumptions.
Since AATWA(0) = O, AA = dAA/dt)e—o = Br(1 -
aw)WAA(0) + oe). Hence (A,AA4) ~ 0 forall 4 €
A, namely, AA is orthogonal to .A.

Moreover, d(AA(t), AA(t))/dti=0 =~ Pu(l —
awp)e? > 0 for sufficiently small € if a = 0 or
wr, < 1/a. Thus the theorems are proved. L

152



