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Abstract

Convergence of a matrix dynamics for online LDA is analyzed. Especially, stable spurious solutions
are pointed out and two schemes to prevent the spurious solutions are proposed. The performance of the
algorithm is confirmed by simulations of face identification.

1 Introduction

Linear discriminant analysis (LDA) is applied to broad areas, e.g. image recognition [5]. However, online
algorithms of LDA are not sufficiently studied while online principal component analysis (PCA) has been
established well [1][2]. Note that N × N matrices appears in [3][4], where N is the dimension of data.
This weak point is serious because N is often large for some applications such as image recognition tasks.
Recently, an online LDA algorithm which does not need N ×N matrices is proposed [6][7]. In the present
paper, convergence of this algorithm is analyzed.

2 Online LDA Algorithm

To estimate the class for a data vector x by LDA, we transform it to the “feature” vector y = AT x and
compare y with the mean feature vector of each class. In online LDA, the discriminant matrix A is updated
every time new data is presented.

2.1 Matrix dynamical system for LDA

Let “between-class” covariance B and “within-class” covariance W be N ×N symmetric matrices. In this
paper, B and W are assumed to be positive semidefinite and positive definite, respectively. When a scalar
λ and a vector p 6= 0 satisfy Bp = λWp, λ and p are called a generalized eigenvalue and a generalized
eigenvector , respectively.

In LDA (esp. Fisher Linear Discriminant), we have to find L generalized eigenvectors p1, · · · ,pL which
correspond to L largest generalized eigenvalues and ‖p1‖ = · · · = ‖pL‖ = 1, where L ≤ N is the number of
“features”. To be exact, it is enough to find an N × L matrix A = (aij) which can be written as A = PLQ,
where Q is an arbitrary orthogonal matrix and PL = (p1, · · · ,pL). Let AL be the set of all such As. Note
that A ∈ AL satisfies BA = WAΓ and ATWA = I, where Γ is an L×L matrix and I is the identity matrix.
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In order to find a matrix A ∈ AL, a potential function is considered:

φ(A) = Tr
[
ATBA

(
I − 1

2
ATWA

)]
. (1)

This φ takes its maximum value on AL [7]. By differentiating φ, we obtain a potential flow daij/dt =
(1/2)(∂φ(A)/∂aij). This flow is calculated as

d

dt
A(t) = BA(t) − 1

2
BA(t)A(t)TWA(t) − 1

2
WA(t)A(t)TBA(t). (2)

From this matrix dynamical system (2), the following online LDA algorithm is constructed.

2.2 Online LDA algorithm

At every time step t = 1, 2, 3, · · · , a new pair (x(t), c(t)) is presented, where x(t) is a data vector, c(t) ∈
{1, · · · ,M} is the class of x(t), and M is the number of classes. The number L of features is less than M .
Based on this pair, auxiliary variables are updated as follows:

tc(t) = tc(t − 1) + δ(c, c(t)), x̄(t) =
(

1 − 1
t

)
x̄(t− 1) +

1
t
x(t), (3)

x̄c(t) =




(
1 − 1

tc(t)

)
x̄c(t− 1) + 1

tc(t)x(t) (c = c(t)),

x̄c(t − 1) (c 6= c(t)),
(4)

vc(t) = x̄c(t) − x̄(t), w(t) = x(t) − x̄c(t)(t), (5)

yc(t) = A(t − 1)T vc(t), z(t) = A(t− 1)T w(t), (6)

F (t) =
1
M

M∑
c=1

vc(t)yc(t)T , g(t) =
1
M

M∑
c=1

yc(t)
(
yc(t)T z(t)

)
, (7)

where c = 1, · · · ,M and δ(c, c(t)) = 1 (c = c(t)), 0 (c 6= c(t)). Then the discriminant matrix A is updated as

A(t) = A(t − 1) + η
(
F (t) − 1

2
F (t)z(t)z(t)T − 1

2
w(t)g(t)T

)
, (8)

where η > 0 is the learning coefficient. Note that the variables yc, z, F, g are introduced instead of calculating
B(t) = 1

M

∑M
c=1 vc(t)vc(t)T itself so that N ×N matrices are not needed to update A. In addition, W (t) =

1
t

∑t
τ=1 w(τ)w(τ )T is replaced with the instantaneous value w(t)w(t)T .

As for the initial values, tc(0) = 0, x̄(0) and x̄c(0) are arbitrary vectors, and A(0) is an arbitrary matrix
which satisfies rankA(0) = L.

3 Fixed Points and Their Stability

Let JB = ATBA and JW = ATWA.

Theorem 1 The following conditions are equivalent:

1. A is a fixed point of (2).
2. A satisfies

BA = WAJB , (9)

JB = JWJB = JBJW . (10)
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Corollary 1 Let A be a fixed point of (2). Then, JW = I unless JB is singular. In other words, JB has an
eigenvalue 0 if JW 6= 0.

Corollary 2 Let A be a fixed point of (2). Then, by taking an appropriate orthogonal matrix R and replacing
AR by A, we obtain

JB = diag(β1, · · · , βK , 0, · · · , 0), (11)

JW = diag(1, · · · , 1, ωK+1, · · · , ωL), (12)

where β1 ≥ · · · ≥ βK > 0 and ωK+1 ≥ · · · ≥ ωL.

Theorem 2 Let A be a fixed point of (2) and JW = I. Then this fixed point A is stable if and only if
A ∈ AL.

Theorem 3 Assume that rankB ≥ L. Let A be a fixed point of (2) and JW 6= I. Then this fixed point A is
stable if and only if the following conditions hold in Corollary 2:

1. ωK+1, · · · , ωL > 2, and
2. β1, · · · , βK are L largest generalized eigenvectors.

4 Preventing Spurious Solutions

Theorem 2 corresponds to true solutions while Theorem 3 corresponds to spurious solutions. In this
section, we discuss simple schemes to prevent the spurious solutions.

4.1 Starting around the origin

From Theorem 2 and Theorem 3, Tr(ATWA) = L at true solutions, while Tr(ATWA) > L+1 at spurious
solutions. In this sense, spurious solutions are more “far” from the origin than true solutions. This fact leads
us to a heuristic scheme: take the initial value of A near the origin.

This scheme works well in our simulations. It also has a theoretical ground at least for the case L = 1,
namely, A is a vector.

Theorem 4 Assume that L = 1 and A(0)TWA(0) < 2. Then the solution of (2) keeps A(t)TWA(t) < 2 for
all t > 0.

This theorem is proved since

d

dt

(
A(t)TWA(t)

)

= 2A(t)TWBA(t)
(

1 − 1
2
A(t)TWA(t)

)
− A(t)TW 2A(t)A(t)TBA(t)

(13)

is negative or zero when A(t)TWA(t) = 2. Remember that there is no stable fixed point in the region
ATWA ≤ 2 except for the true solutions A ∈ AL. Moreover, there is no periodical orbit because (2) is a
potential flow.
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4.2 Relaxation of B

Another simple scheme is replacing B with B + εBI, where εB is a small positive number. Then this new
B is positive definite now. This means that all fixed points are unstable except for the true solutions because
of the following reason. Assume that A is a fixed point of (2), B is positive definite, and JW 6= I. From
Corollary 1, JB has an eigenvalue 0. Then rankA must be less than L since B is positive definite. In this
case, ωL = 0 < 2 and this A is unstable from Theorem 3.

If one does not allow the small error of the solution which is caused by +εBI, one can use +εBW instead.
Then the generalized eigenvectors does not change.

5 When Sample Size Is Small

When the number t of samples is small compared with the dimension L of data, W can be singular and
A(t) can diverge. In this case, replacing W with W + εW I prevents the divergence of A(t), where εW is a
small positive number. This replacement is also desirable in terms of robustness because a component which
correspond to a too small eigenvalue of W is useless noise in most cases.

6 Simulation

We have applied the proposed algorithm for face identification task. The face image consists of 10 × 10
pixels, and hence N = 100. Each pixel has 256 level gray scale value from −1 to +1. The number of persons
is M = 3 in the first part of the simulation. In the latter part, new person is added and M = 4. For
each person, 100 images are used as the sample for this experiment. The parameters of learning are L = 2,
η = 0.01, εB = 0, εW = 0.01. The result is shown in Fig. 1. The step t in the figure is equal to the total
number of presented images. Online LDA successfully adapts to the new situation.

We have also examined the effect of the initial value. After sufficient learning (t = 40000) with N = 100,
M = 3, L = 2, η = 0.001, εB = 0 and εW = 0.0001, only 93% of 100 trials attained 100% correct identification
when each element of A(0) is generated by the uniform distribution on [−1,+1], while all 303 trials attained
100% when on [−0.01,+0.01]. This result is consistent with the discussion in section 4.1.

7 Conclusion

The convergence of the matrix dynamics for online LDA are analyzed. Especially, all fixed points are
identified and their stability is determined. Then two schemes to prevent the spurious solutions are proposed.
The performance of the algorithm is confirmed by simulations.

One problem in online LDA is selection of the learning coefficient η. A guideline on selection or automatic
adjustment of η is desired to use online LDA for extensive applications.

From another potential function ψ(A) = log det[ATBA]−Tr[ATWA] together with the metric 〈∆A1,∆A2〉A =
Tr[∆AT

1 ∆A2(ATBA)−1], we can obtain another potential flow

d

dt
A(t) = BA(t) −WA(t)A(t)TBA(t). (14)

As a special case of (14), we obtain Oja’s flow [1] when W = I. However, convergence of the algorithm based
on (14) is significantly slower than the convergence of the present algorithm. The reason of this phenomenon
is not clear at now.

This work has been partly supported by CREST of JST (Japan Science and Technology) 279102.
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Fig. 1: Learning curve of online LDA.
Until t = 300, images of three persons are presented. At t = 300, a new class of the fourth person is added.
After t = 300, images of four persons are presented one by one. Online LDA adapts to the new situation.
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