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Abstract

Linear discriminant analysis (LDA) is applied to
broad areas, e.g. image recognition. However, succes-
sive learning algorithms for LDA are not sufficiently
studied while they have been well established for prin-
cipal component analysis (PCA).

Recently, a successive leaning algorithm which does
not need N x N matrices has been proposed for LDA,
where N is the dimension of data. In the present paper,
an improvement of this algorithm is ezamined based on
Sanger’s idea. By the original algorithm, we can obtain
only the subspace which is spanned by major etgenvec-
tors. On the other hand, we can obtain major etgen-
vectors themselves by the improved algorithm.

1. Introduction

Linear discriminant analysis (LDA) is applied to

In section 2, the improved algorithm is proposed.
The algorithm is shown in two forms. One is easy to un-
derstand and the other is efficient in calculation. They
are different only on the expression and both forms
yield the exactly same result. In section 3, the pro-
posed algorithm is applied to the face recognition task
and the performance is confirmed. In section 4, the
conclusion is mentioned. The derivation of the pro-
posed algorithm is explained in appendix A.

2. Sanger-type Algorithm

To estimate the class for a data vector = by LDA,
we transform it to the “feature” vector y = AT« and
compare y with the mean feature vector of each class.
In online LDA, the discriminant matrix A4 is updated
every time a new datum is presented. The derivation
of algorithm is shown in appendix.

2.1. Basic Form

cessive learning algorithms for LDA are not sufficiently
studied while they have been well established for princi-
pal component analysis (PCA) [8][9][10]. Conventional
learning methods for LDA [6][1] have a disadvantage
that V x N matrices must be kept and updated, where
N is the dimension of data. This is a serious problem
because NV is often large for some applications such as
image recognition tasks.

Recently, a successive leaning algorithm which does
not need N x N matrices has been proposed for LDA
(2][3][4]. In the present paper, an improvement of this
algorithm is examined based on Sanger’s idea (10]. By
the original algorithm, we can obtain only the subspace
which is spanned by major eigenvectors. On the other
hand, we can obtain major eigenvectors themselves by
the improved algorithm.
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At every time step t = 1,2,3,---, a
pair (2(t),c(t)) is presented, where z(t) is an
dimensional data vector, c(t) € {1,---, M} is the

of 2(t), and M is the number of classes. Base
this pair, auxiliary variables are updated as follow

= t(t — 1) + d(c, c(t)),
= (1 - %) 2(t—1)+ %z(t),



| M
B(t) = 7> v (), (6)
wherec=1,---, M and §(c,c(t)) = 1(c = c(t)), 0(c #
¢(t)). Then N x L discriminant matrix A is updated:
A(t) = A(t—-1)+ n[B(t)A(t -1)

- %B(t)A(t - 1)UT (At - )T w(t)w(t)T At - 1))

_ %w(t)w(t)TA(t —)UT (At - )T BR)A(E - 1)),
(7)

where the learning coefficient 7 is a small positive num-
ber, and

511 S12 S13 - S1L
0 s22 s23 --- Sa2L

UT(S) = 0 0 s33 - s3L (8)
0 o --- 0 srrL

for a matrix S = (s;;). The number L of features is less
than or equal to min(N, M — 1). Note that the covari-
ance matrix W(t) = 1 S _ w(r)w(r)T within classes
is replaced with the instantaneous value w(t)w(t)7.
Such replacement is justified by the theory of stochastic
approximation [7]. As for the initial values, t¢(0) = 0,
Z(0) and 2°(0) are arbitrary vectors, and A(0) is an
arbitrary matrix which satisfies rankA(0) = L.

2.2. Procedures for efficient calculation
In order to avoid N x N matrices, the following pro-

cedures are recommended instead of the basic form in
the previous subsection:

ye(t) = Alt-1)To%), (9)
z(t) = At -1)Tw(t), (10)
1 M
Fit) = 27> v 0y (), (11)
c=1
1 M
Gt) = Y vveT, (12
e=1
and
At) = A(t - 1)

+n(F() - %F(t)LIT (2(t)=(t)T) - %w(t)z(t)T UT(G(1))).

(13)

Note that the result of the updating is exactly same as
the basic form, and the NV x N covariance matrix B
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between classes is not used any more. The updating
procedures in this subsection is efficient for the case
N > M, which is typical in image recognition tasks
since the number of pixels are often very large.

3. Experimental Results
3.1. Adaptivity

We have applied the proposed algorithm for face
identification task. The face image consists of 10 x 10
pixels, and hence N = 100. Each pixel has 256 level
gray scale value from —1 to +1. The number of per-
sons is M = 2 in the first part of the experiment In the
latter part, new person is added and M = 3. The pa-
rameters of learning are n = 0.01, L = 1 (when M = 2)
and L = 2 (when M = 3). Each element of the initial
matrix A(0) is generated by the uniform distribution
on [—0.1,40.1}. In this experiment, ww7T is replaced
by wwT + ewI so that stable result is obtained [4],
where esy = 0.01 and I is the identity matrix. The re-
sult is shown in Fig. 1. The step ¢ in the figure is equal
to the total number of presented images. The proposed
algorithm successfully adapts to the new situation.
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Figure 1. Learning curve of proposed algo-
rithm. Untilt = 1000, images of two persons
(A) and (B) are presented in random order, e.g.
A A B, A A A B, B, A, ---. Att =1000, a
new class of the third person (C) is added. After
t = 1000, images of three persons are presented
in random order. The ratio of correct identifica-
tion is evaluated at every 10 steps. Different data
sets are used for the learning and for the evalu-
ation. The proposed algorithm adapts to the new
situation.



3.2. Comparison with [2][3][4]

We have also compared the proposed algorithm with
the algorithm in [2](3][4]. The number of persons is
M = 5. Other parameters are N = 100, n = 0.01,
ew = 0.01. First, 1500 step learning is executed with
L = 4. Then, the last 2 columns of A = (a1, a3, a3, as)
are deleted and the performance of the identification
with this “reduced” A = (a1, az) is evaluated. In this
experiment, 100 images are prepared for each person
and they are used repeatedly. The result is shown is
Fig. 2. The deterioration of the performance is small
for the proposed algorithm, while it is sometimes large
for the algorithm in [2][3][4]. This can be understood in
the following way. Let p;,---,p4 be the eigenvectors

which correspond to 4 largest eigenvalues A\; > --- >
A4, respectively:
Bpi = Ainiv (Z—__ 1,--- ’4)1 (14)

where B and W are covariance matrices between
classes and within classes, respectively. In the proposed
algorithm, the deleted columns are p; and p,4, and the
remaining columns are p; and p,. Consequently, two
most important components remain every time. On the
other hand, in the algorithms in [2][3][4], the columns of
A are only guaranteed that they are an W-orthonormal
basis of the subspace S which is spanned by p,,-- -, py-
Thus, the directions of remaining column vectors a;
and aj in S change every time according to the initial
value of A. An example of learning curves are shown
in Fig. 3.

4. Conclusion

An improvement of successive learning algorithm of
LDA [2][3][4] was examined based on Sanger’s idea [10].
By the original algorithm, we can obtain only the sub-
space which is spanned by major eigenvectors. On the
other hand, we can obtain major eigenvectors them-
selves by the improved algorithm. The performance of
the proposed algorithm was experimentally studied.

One problem in online LDA is selection of the learn-
ing coefficient 7. A guideline on selection or automatic
adjustment of 7 is desired to use online LDA for exten-
sive applications. In general, the smaller 7 is, the more
precise the final result is. However, the convergence 1s
slow if 77 is small. On the other hand, if n is large, A(t)
keeps moving around the best A = Ap although the
speed of approach to a neighborhood of Ay is fast.

Of course, annealing method can be applied for the
present algorithm, e.g. 7 = ng/t. Then the convergence
to the exact solution can be guaranteed by the theorem
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Figure 2. Comparison of proposed algo-
rithm (“new”) and algorithm in [2][3][4]
(“original”). The performance with “reduced”
A (L = 2) is evaluated after learning with “full”
A (L =4). The result is shown as histogram for
1291 trials for each algorithm. The deterioration
of the performance is small for the proposed algo-
rithm.

of stocastic approximation [7]. However, selecting a
sufficiently small constant n is practically enough in
most cases. Constant 7 is also desirable in terms of
adaptivity.

The authors wish to thank Dr. Takahashi for his
helpful discussions and suggestions. This work has
been partly supported by CREST of JST (Japan Sci-
ence and Technology) 279102.

A. Appendix: Derivation of algorithm

The matrix dynamics in [2][3][4] can be written in
vector form:

L
1
Baj — §B (Z ala;‘r) War

a, =
=1
1 L
- EW (; ala,T) Bay (15)
) airWak
= Bak—iB(al,---,aL)
afWak
, a{Bak
_§W (al,"‘,aL) . ) (16)
a{Bak
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Figure 3. Comparison of proposed algo-
rithm (“new”) and algorithm in [2][3][4]
(“original”). Learning curve is shown for each
algorithm. Until t = 1500, learning is ezecuted
with L = 4. Att = 1500, the last two columns
of A are deleted. After t = 1500, learning is ez-
ecuted with [ = 2. The deterioration of the per-
formance is small for the proposed algorithm.

where A(t) = (a1(t),---,ar(t)) and k =1,---,L. By
replacing L in (15) with k, we obtain

a

=1
1 k
- §W (; aia; ) Bay, (17)
= Bak
afWak
1 aTWa
— =B (a1, -+, @k, Gk41," -, GL) "0 .
2
0
afBa.k
1 aTI.S'a.
_§W(a11"'$a‘kyak+11"'1aL) kO k
0
(18)
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It is written in matrix form as

: 1

A = BA- %BAL(T(ATWA) - 5WAL(T(A.TBA).
(19)

From this dynamics, the proposed algorithm is con-
structed.
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