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Abstract

Cortical neurons of behaving animals generate ir-
reqular spike sequences. This suggests that a neuron
recetves highly fluctuated synaptic inputs. If the in-
put fluctuation 1is large relatively to the mean, then
sptkes would be randomly discharged due to the rate
determined by the mean and the fluctuation. When
the incoming synaptic inputs are uncorrelated, such a
random spiking mechanism generates a entirely ran-
dom spike sequence at a constant rate (Poisson pro-
cess), because the mean and the fluctuation are con-
stant. Otherwise, temporally correlated inputs cause
the spike rate to be variable, and this type of spike
event process corresponds to a ‘double stochastic Pois-
son process’.

In the present paper, we attempt to determine
whether this simple spiking mechanism can statisti-
cally reproduce the spiking data recorded in monkey
prefrontal cortices. Model parameters are estimated
from the auto-correlogram of a spike sequence, and the
consistency is examined based on the statistical coeffi-
cients of inter-spike intervals. It is found that a ‘dou-
ble stochastic Poisson process’ can reproduce the inter-
val statistics of the biological spiking data consistently
with the auto-correlogram.

1 Introduction

A cortical neuron under a constant current injection
wn vitro generates regular spike sequences with almost
constant intervals [1]. On the other hand, a neuron
n vivo generates irregular spike sequences including
highly variable intervals [2][3]. This suggests that a
neuron n vivo receives highly fluctuated synaptic in-
puts. With inhibition balanced to excitation in the
incoming inputs, the fluctuation becomes large rela-
tively to the mean, and spikes are randomly discharged
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[4]. The random spike sequence (Poisson process) ex-
hibits high variability in its intervals. So this sce-
nario is consistent with biological spiking variability.
But many biological spike sequences differ from the
Poisson process in statistical coefficients of inter-spike
intervals[5].

Shinomoto, Sakai and Funahashi (1999) [5] at-
tempted to determine whether the simple leaky
integrate-and-fire mechanism can reproduce the spik-
ing statistics. They examined statistical coefficients
of inter-spike interval distribution and the correlation
coeflicient of consecutive intervals estimated from the
spiking data recorded in monkey prefrontal cortices.
It was found that the leaky integrate-and-fire mecha-
nism can not statistically reproduce the spiking data
under the assumption of uncorrelated synaptic inputs.
They led the necessity of temporal correlation with
time scale on the order of 100 msec in the incoming
inputs to reproduce the spiking statistics [6][7]. These
studies suggest that the fast fluctuation and long time
scale correlation in the synaptic inputs are essential
factors to reproduce the spiking statistics. But they
have not yet solved the problem of whether the inte-
gration mechanism in a cell is essential or not.

In this paper, we examine the effect of temporal
integration on the spiking statistics by considering a
simple random spiking mechanism without any tem-
poral integration in a neuron. When the mean of in-
coming inputs is too small to produce a spike by itself
and the fast fluctuation is dominant in spiking, spikes
are randomly emitted due to the rate determined by
only the mean and the fluctuation at each moment.
With temporally correlated inputs, the spike rate is
variable. A neuron receives synaptic inputs from a
large number of neurons, so its spike has little influ-
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Figure 1: a: Examples of the normalized auto-correlogram A(l) estimated from the biological spiking data. b:
Each dot represents two cumulative coefficients of auto-correlation, (Ag, A1), estimated from a prepared set of
biological spike sequences. The plot includes 666 dots respectively corresponding to 666 prepared data sets. The
values (Ag, A1) = (0,0) are given by the Poisson process (random sequence).

ence on the incoming inputs through possible recur-
rent connections. Therefore the spike rate is consid-
ered to be independent from its spike events. This
type of spike event process is called as ‘double stochas-
tic Poisson process’. In this mechanism, the effect of
input fluctuation is adopt as the random spiking, and
the effect of input correlation is adopt as the slowly
changing rate. We attempt to determine whether the
simple ‘double stochastic Poisson process’ can statis-
tically reproduce the biological spiking data.

2 Biological data and Statistics
In this paper, we analyze delay period activities of
cortical neurons in a delay response task experiment.
The detail of the experiment is shown in [5].

In the experiment, a monkey is required to preserve
a visual cue information presented in advance during
3 second delay period. Iterating the experiment, the
spiking data were obtained from total 233 neurons in
the prefrontal cortices of three monkeys. We use only
the middle 2 sec in the delay period of 3 sec in order to
avoid the possible initial and final transient changes.
The 2 sec spike sequences are classified according to
the cues and the neurons, and 1864 sets (233 neurons
x 8 cues) of spike sequences are obtained. In this
paper, we do the statistical operations for one set of
spike sequences. For reliable statistical analyses, we
adopt only the sets including more than 100 spikes.
The data sets containing more than 100 spikes are 666
of 1864.

We analyze the prepared data sets in two ways:
auto-correlogram of a spike sequence, and statistical

coefficients of an inter-spike interval sequence.

Statistics of auto-correlation The spike auto-
correlation function is defined as a function of time
lag {, (Mt)A(t + 1)), where A(t) is spike probabil-
ity per unit time at time ¢, and the notation (---)
represents a temporal averaging operation: (f(t)) =
limy 00 % fg f(t)dt. The ‘auto-correlogram’is the es-
timate from fimte data, which is defined as the fre-
quency histogram of events that spikes are observed
in both of the two time windows separated by lag[. If
the spike sequence has no temporal correlation, then
the auto-correlation is equal to the square of the mean
spike rate, (A(£)A(t+1)) = (A\)2. Here we define a nor-
malized auto-correlation function: A((),

ap=SULED

The quantity of A(l) has no dimension. The sign of
A(l) corresponds to the sign of correlation at lag [ in
the sequence. Some examples of A(l) estimated from
the biological spiking data are shown in Figure la.
Most of the spiking data exhibit positive correlations,
whose shapes are similar to exponential functions.

In this paper, we use the normalized auto-
correlogram A(l) to estimate the model parameters,
but the auto-correlogram itself largely depends on the
width of histogram time bin. Accordingly, the esti-
mation of A(l) contains arbitrariness of the analyzer.
So we define cumulative quantities of auto-correlation
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Figure 2: Each dot represents the statistical coefficients (CV, SK) values (in left plot) and (COR, SK) values (in
right plot) estimated from a prepared set of biological spike sequences. Each plot includes 666 dots corresponding
to 666 prepared data sets. The values (CV, SK, COR) = (1, 2, 0) are given by the Poisson process (random

sequence).

with no need of time bin,
A, = / FA(lydl
0

The correlation is not considered to last infinitely,
so each of the cumulative coefficients {Ag} has finite
value. When a set of N sequences with length L is
given, the cumulative coefficients {Ag} are estimated
without use of the explicit auto-correlogram or his-
togram bin as follows,

M
Ar ~ / * A(l)dl
0

B 0<%;M M((AY = 1/L)(L — 1)

- M,

where [;; represents a time lag from the i-th spike
to the j-th spike, l;; = t; —t;. The M represents
the integral range. Because the sequences have finite
length L, the integral range is required to be also finite,
M < L. The factor (A)({A) — 1/L) corresponds to
the normalizing factor, which is revised from (\)? for
the sake of unbiased estimation. The factor (L — ;)
corresponds to the range of averaging time at lag I;;.
In the prepared data set, the sequence length L of each
trial is equal to 2 sec, and we settle the integral length
M on 1 sec (L =2,M =1). The number of trials, N,
varies with each data set.

If all of the {Ar} are equal to zero, then the se-
quence has no correlation, which corresponds to a ran-
dom spike sequence (Poisson process). If each Ay has

positive value, then the ratio Agy1/Ag characterizes
the sustaining time scale of positive correlation. In
the case of exponential correlation, A(l) & exp (—!/s),
the ratio Agy1/Ag is exactly equal to the correlation
time scale, s.

The values of (Ag, A1) estimated from the 666 sets
of biological spiking data are plotted in Figure 1b.
Most data have positive (Ag, A1) values. It shows that
the spiking data have positive temporal correlation.
We use these two coefficients to estimate the model
parameters.

Statistics of inter-spike intervals We examine
a spiking model through comparison with biological
spiking data based on three statistical coefficients of
inter-spike intervals: the coefficient of variation CV,
the skewness coefficient SK, and the correlation coef-
ficient of consecutive intervals COR, defined as,

(T-T)
Cv = — ,
T
(T-T)°
SK = 3 bl
(T —T)?
(T-T)
where T represents an inter-spike interval, and
{T1,Ts,...,T;, ..., T,} is an interval sequence. The no-
tation ~~- represents an averaging operation through



Figure 3: Schematic representation of a simple random spiking model belonging to a double stochastic Poisson

process.

an interval sequence: T = % Z?zl T;. The coefficient
of variation CV is a measure of variability of intervals,
which shows a measure of spiking irregularity[2]. The
skewness coefficient SK is a measure of the asymmetry
of the interval distribution, which shows a measure of
anomalous long intervals[10][5]. The correlation co-
efficient COR 1is a serial correlation coeflicient at lag
1 in an interval sequence, which shows a measure of
temporal correlation[11][6].

The coefficients (CV, SK, COR) values estimated
from the spiking data are plotted in Figure 2. Any
random sequence (Poisson process) gives the coeffi-
cient values, (CV, SK, COR)=(1, 2, 0). The biological
(CV, SK, COR) values are largely distributed around
those of Poisson process, (1, 2, 0). Tt has been found
that the Poisson process can not statistically repro-

duce these (CV, SK, COR) values [6].

3 A double stochastic Poisson process
With inhibition balanced to excitation in incoming in-
puts, the mean could be small relatively to the fluctu-
ation [4]. When the mean is too small to emit a spike
by itself and a spike is emitted by the instantaneous
fluctuation, the temporal integration in a neuron has
little effect on the spike probability. In this case, spikes
are randomly emitted due to the rate A(¢) determined
by the mean and fluctuation at each moment. Here
we will call this spiking mechanism as ‘random spik-
ing mechanism’. We attempt to examine the effect of
temporal integration by considering the random spik-
ing mechanism without temporal integration.

In the random spiking mechanism, uncorrelated in-
puts lead to constant spike rate, A(t) = Aq, and the
spike sequence corresponds to a Poisson process. Oth-
erwise, temporally correlated inputs lead to variable
spike rate. When spike rate A(t) is independent from
its spike events, the spike event process is called as
‘double stochastic Poisson process’. A neuron receives

synaptic inputs from a large number of neurons, so
its spike has little influence on the incoming inputs,
even 1if the network has recurrent connections. There-
fore the double stochastic Poisson process is naturally
derived from the random spiking assumption.

The auto-correlation function of the spike rate A(%)
The spike
auto-correlograms of the spiking data are similar to

is equal to the spike auto-correlation.

exponential functions, so we assume that the auto-
correlation function of A(t) is described by an expo-
nential function,

DA +D) = (%) =N e+ ()

where s is correlation time scale.

The Ornstein-Uhlenbeck process 7 has an exponen-
tial correlation function: (n(t)n(t +1)) o e="/*. It is a
well-known one variable stochastic process described
as sn = —n+&, where ¢ is white Gaussian noise. Here
we assume the spike rate A(t) to be simply described
with the Ornstein-Uhlenbeck process as,

sn = —n+V2¢,
a(n—p >
M) = {0(77 | EZ</3§

The process is represented schematically in Figure 3.
We can regard n as the mean or the fluctuation of
incoming synaptic inputs, or some statistical quantity
among the presynaptic neurons.

The Ornstein-Uhlenbeck process has a steady dis-
tribution of N(0,1) (normal distribution). Therefore
the three model parameters (s, a,3) are easily esti-
mated from the spike frequency (A), and the cumula-
tive coefficients of auto-correlation, (Ag, A1), by solv-
ing the coupling equations as follows,

a) = /;0 a(n—h) 6,—772/261,7 ’

V2T
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Figure 4: Comparison of the model simulation with the biological spiking data based on the statistical coefficients

of inter-spike intervals, (CV, SK, COR).

2y _ = a*(n-p)° -n?/2
() = /,3 Vo e Pdn

- M,
Ay = o2 /0 dl |

M- M
A = oy /0 l dl .

In the next section, we simulate this simple model at
the parameters estimated from the auto-correlation
statistics ((A), Ag, A1), and attempt to determine
whether the model can reproduce the interval statis-

tics (CV, SK, COR)

4 Model simulation
The model parameters (s, «, ) are estimated from the
auto-correlation statistics ((A), Ag, A1), which are es-

timated from each set of the biological spike sequences.
The interval statistics (CV, SK, COR) are also esti-

mated from the same data set. We numerically simu-
late the model under the same condition as the exper-
iment: the same trial length and the same number of
trials. We calculate the coefficients (CV, SK, COR)
by the same method from the obtained artificial data
set. We compare the coefficients (CV, SK, COR) be-
tween the simulation and the biological data set. Each
simulation does well reproduce the interval statistics
(CV, SK, COR). We plot the biological and artificial
(CV, SK, COR) values about whole 666 data sets in
Figured4. The projected shapes of the coefficients dis-
tribution are very similar to each other. We iterate
the simulation 1000 times per a data set, and esti-
mate each significance value of the coefficients (CV,
SK, COR). The minimum significance value is 1.1%
(P > 0.011). Tt is enough larger than 1/666 = 0.0015.

Even the highly simplified random spiking model
has sufficient ability to reproduce the interval statis-
tics consistently with the auto-correlation statistics. It



implies that the temporal integration mechanism has
little effect on the spiking statistics, at least for the
biological spiking data we prepared.

5 Discussion

In the previous studies, it was found that highly fluc-
tuated and slowly correlated inputs are needed for
the leaky integrate-and-fire mechanism to reproduce
the spiking statistics of neurons in prefrontal cortex
[5][6]. In this paper, we attempted to examine the
effect of temporal integration on the spiking statis-
tics, by considering a simple random spiking mecha-
nism without any temporal integration in a neuron.
We found that even a highly simplified random spik-
ing mechanism has sufficient ability to reproduce the
statistics of inter-spike intervals consistently with the
statistics of auto-correlation as long as the incoming
inputs have long time scale correlation. It implies that
the temporal integration in a cell has little effect on
the spiking statistics. It is possible that a cortical
neuron performs the statistical operation through the
presynaptic neurons at each instance rather than the
temporal operation on the history of synaptic inputs,
while a neuron has the ability of performing complex
temporal operations[14].

The random spiking mechanism shares a common
point with the ‘coincidence detector’ advanced by
Abeles[12][13]. The temporal integration is neglected
in both. But the random spiking mechanism bases
on highly fluctuated inputs, while the ‘coincidence de-
tector’ bases on a specific temporal pattern of coinci-
dently incoming inputs. This difference leads to the
problem of what is the carrier of information in such
a noisy spike sequence. We hope to solve the problem
in the future.
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