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ABSTRACT < Naive methods >
Real-world objects often have two or more significant [1] combined [2] separated
attributes. For example, face images have attributes of per-
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The authors have been proposed a method for classification
with double attributes. Its main idea is mutual suggestion

of hints between a pair of classifiers. In the present paper, @Y= Y OHA T A A A
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and propose a new method of EM-like iterations. We will [3] hierarchical s =
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1. INTRODUCTION classifier classifier

Pattern recognition on one attribute has been studied widely hints

[3], while that on double attribute is not sufficiently studied OLAY O )

in spite of its importance. Rbeal—world probllems of;[en have JAY OE E

two or more interesting attributes. A typical example is face =

images which have attributes of persons, expressions, and OEIVA OHAY OHAY % % %

so on. Even if you are interested in only one of those at- CEAY - 7
tributes, additional informations on auxiliary attributes can

help recognition of the main one. Figure 1. Comparison among naive methods and the pro-

From this point of view, the authors have been proposed posed method
a method for classification with double attributes [2]. Its
main idea is mutual suggestion of hints between a pair of
classifiers: each classifier correspond to one attribute (Fig. 1).
Since decisions of classifiers are not consistent in generalye ysed as a good approximation of theoretically solid me-
a mediation mechanism is necessary. In [2], a heuristic me-giation.
diation is applied. It has an advantage that the result is
obtained without iterative procedures, while its theoretical
meaning is not clear.
In the present paper, another mediation is proposed. It
has clear meaning based on information geometry [4]. EM- 2. TASK
like iterative algorithm can be applied for calculation of the
estimated joint probability of two attributes.
Both methods give almost same results of classification AS training samples; vector datar(1), - -- , z(n) are pre-
in our experiments. Thus, the heuristic mediation in [2] can Sented. In addition, double attributgs c) for eachx are



also presented:

z(t) = (z1(t),... ,an ()" € RV, @
s(tye S={1,---,S}, )
c(t) eC = {1 -, 0O}, 3)
(t=1,---,n), 4)

whereT" denotes matrix transposition. Then, a new daitim
is presented and estimation of its attributes:) is required.
A solution for this task has been proposed in [1] for the

case that the whole data can be approximated by the bilin-

ear model. In our previous paper [2], different approach is

Figure 2: Information-geometric illustration of mediation

discussed for general cases. We reexamine the task in the

next section based on information geometry [4].

3. INFORMATION-GEOMETRIC APPROACH

Suppose that we have a pair of classifiers

f(wvc) (fl($7c%~-~afé(w70»» (5)
g(il!,S) (gl(w7s)7"' agC(wvs))a (6)

where fs(x, ¢) andg.(x, s) are estimations of conditional
probabilitiesq(s|x, ¢) andq(c|x, s), respectively. The clas-
sifier f is trained for combined inpyte(t), ¢(t)) and simple
outputs(t), while g(t) is for (z(t), s(t)) ande(t). Thesef
andg are blackboxes throughout the proposed method: ar-
bitrary classifiers can be used fffrandg as far as they out-
put conditional (posterior) probabilities of classes (Fig. 1).

We want to estimate the marginal probabilitigs|x),
q(c|z), and/or the joint probability (s, c|x) based on the
guessed conditional probabilitigsandg. As we will show
soon, f andg are not consistent generally in the sense that
there is no joint probability (s, ¢|«) whose conditional prob-
ability ¢(s|z, c) andq(c|z, s) are equal tgf(x, ¢) andg.(x, s),
respectively. Hence, a mediation mechanism is required. In
our previous work [2], a heuristic mediation is applied (ap-
pendix A). Now we will reexamine the mediation problem
based on information geometry [4].

From the view of information geometry [4], the present
situation is illustrated as follows. Lé&P be the space of
probability distributions ot& x C:

} (7

From now on, the variable is fixed and it is omitted for
simple notations. In additionf(c) andg.(s) are denoted
asf(s|c) andg(c|s) respectively. The estimated conditional
probability f determines a submanifold in P:
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=q(s,c)/ Zq(s’, c)= f(s
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ZZq(s,c) =1

s=1c=1

F = {q(s,c) epP ’ q(sle

This F denotes the opinion of one classifier. The opin-
ion G of the other classifier is also determined §pm the
same way. Dimensions @®, F, G areSC — 1, C — 1,

S — 1, respectively. In particuladim P > dim F 4+ dim G

for S,C > 1. This meansF NG = () in general. Hence, we
want to findg € P which is ‘near’ to bothF andg (Fig. 2).

As for measure of distance between two probability distri-
butionsg(s, ¢) andp(s, c¢), Kullback-Leibler divergence

ZZpsclog 5:€)

s=1c=1 SC)

is appropriate since it is connected to asymptotic probability
to judgeq asp wrongly from samples.

In summary, two submanifoldg, G C P are presented,
and we wantto find € P, f € F, g € G which minimizes

d(q, f,9) = D(fllq) + D(gllq)-

D(pllq) = 9)

4. EM-LIKE ALGORITHM

The minimization problem in the previous section can be
solved by alternative iteration of partial minimizations (Fig. 2).

e-step: For giveng, find f, g which minimized(q, f, g).

m-step: For givenf, g, find ¢ which minimizesd(q, f, g).

Calculation of partial minimizations are described in ap-
pendix B.

According to the above approach, we propose the fol-
lowing algorithm for mediation, i.e. estimation of joint prob-
ability ¢(s, ¢) from guessed conditional probabilitigés|c)
andg(c|s).

1. Set the initial valueg(c) — 1/C andg(s) < 1/8S.

2. Repeat the following two updates alternatively until
convergence, and answer the fin&4, c).

m-step:

1
q(sv C) 5

S{Fs107() +g(cls)g(s)} (10)



e-step: 6. CONCLUSION

fle) « ez, (11) In the present paper, A new method is proposed for classifi-
g(s) «— e V), (12)  cation of double attributes. Though it is based on the same
idea as our previous method, it has clear meaning based on
where information geometry while the previous method is heuris-
s tic. Itis experimentally shown that the previous method can
C(e) = Z f(slc)log f(s|c), (13) be used as a good approximation of the new method which
s—1 q(s,¢) has solid theoretical basis.
c g(cls) There are many points which must be studied for estab-
P(s) = Zg(c\s) log , (14) lishment of the proposed method. A major one is compari-
o q(s,¢) son of merits and demerits with other approaches.
c c In section 5, “expert” classifiers are trained indepen-
Z = Y e, w=>"¢" (15)  dently with only data which have corresponding attributes.
c=1 c=1 This makes number of available samples for each expert
smaller. In order to utilize informations in samples more ef-
5. EXPERIMENTS ficiently, we have to adopt a classifigwhich can deal with
¢ more properly as a “hint”. One natural idea is the use of
The proposed method is experimentally compared with asingle classifier with input vectdt: , . . . , 2, 01c, .. . , 6ce)T.
heuristic method in [2] for basic artificial tasks. Parame- This work has been partly supported by JSPS (Japan

ters of the tasks are shown in Table 1, whémenotes the Society for the Promotion of Science), 14580405.
identity matrix.
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respectively. These experts are independently trained with

only samples which have corresponding value(@j. As-
suming that within-class distribution af(¢) in each(s, ¢) is

Gaussian with a common unknown variance matfixwe

use Fisher linear discriminant[3] as each expert. Classifier

A. BRIEF DESCRIPTION OF THE METHOD IN [2]

Notations in section 3 are used. For giv&s|c) andg(c|s),
we can always find a pair of probabilitigs(s) and G(c)

! e ) . > which satisfy
g is also constructed similarly. Final decision of classifica-
tion is obtained according to marginal probabilitigs) = _ _
S, q(s,¢) andg(c) = 3, q(s, ¢) of estimated joingtE(pzoba- F(s) = Z f(sle)Gle),  Gle) = Zgg(dS)F(S)a (16)
bility ¢(s, ¢). ) ‘
The results are shown in Fig. 3 and 4. Though the pro- becausef and g can be viewed as a transition matrix of
posed method tends to answer a probability ne@rado 1, Markov chain on bipartite graph. In addition, whemg =

both methods give almost same results of classification in{q}, marginal probabilities of are equal t&" andG. From
our experiments. Thus, the heuristic method in [2] can be these considerations, the authors have been proposed to use
used as a good approximation of theoretically solid method. F' andG as estimated marginal probabilities [2].
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Figure 3: Experiment (matrix-type structure)
Upper: attributes = 1(0), 2(x), 3(.). Lower: attribute = 1(0), 2(x), 3(.).
Left: presented samples. Middle and Right: obtained boundaries of classification for proposed method and [2], respective

B. DERIVATION OF PROPOSED ALGORITHM wherery (s, ¢) = f(s¢)0eer anddoe = 1(c = ¢),0(c #
).
Before discussing partial minimizations in section 4, we N
show a lemma which suggests a good nature of the prob-  E-step and M-step are calculated by next propositions.

lem.
Lemma 1 BothF andG are m-flat.

Proof: We only show a proof ot because of symmetry. ~ Proposition 1 Suppose thaj(s, ¢) € P and 7 with a con-
Suppose thaj(s|c) = ¢/(s|c) = € andr(s, ¢) = aq(s,c) + ditional probability f(s|c) are given. Then, the optimal

(1 —a)¢'(s,c), where0 < o < 1. They meany(s,c) = [ € F which minimizedD(f||q) is given by
€q(c) andg'(s, ¢) = £¢'(c). Then
, 1—a)d'(s,c) _
r(sle) = 2405+ ( 0 ey fls.0) = f(slo)f(e), (19)
aq(e) + (1 — a)d'(¢) fle) = ez (20)
Henceag+ (1 —a)¢ € Fifq,¢ e Fando < o < 1. 5 (s|c)
Note that lemma 1 is trivial because we can rewfitas (o) = Z f(slc) log ﬁ’ (21)
s=1 ’

c c c
F = Z gore () | ge >0, Z go =1p, (18) 7 - Ze_C(C)' (22)
c=1

c’'=1 c'=1
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Figure 4: Experiment (cluster-type structure)
Upper: attributes = 1(0), 2(x), 3(.). Lower: attribute = 1(0), 2(x), 3(.).
Left: presented samples. Middle and Right: obtained boundaries of classification for proposed method and [2], respective

Proof: Sincef(s,c) = f(s|e)f(c) and f(s|c) is given, we by >, f(c) = 1. This f(s,c) = f(s|c)f(c) must be the
want to find the optimal probability (¢) which minimizes minimum point sinceF is m-flat. [ |
Corresponding proposition f@gr € G also holds, of course.

f(sle)f(e)
D(flla) = Zf(5|c)f(c) log % (23) Proposition 2 For arbitrary f,g € P,

mind(q, f,g) = 2. 27
= D f(e))_ f(sle)log J(sl0) argmindie, f,9) = (f +9)/ @
c s a(s:¢) Proof:
+ D {f(©log f(e)} Y f(sle), @4) 4, . 9) 28)
= 3 FOKE) + Y F(e)log f(e). (25) flogf+ 2 glogg =3 (f+9)losq (29
_ (F+9)/2
_ : = (f +g)log
In order to minimizeD( f||q) under the constraint_ f(c ;
1, we define Lagrangian
+ 20w gy 9108 ()
LIf1 =) @)+ f@log fle) =AY fley—1]. = 2D(llg)+ D(f[|h) + D(glh), (31)
¢ (26) whereh = (f + g)/2. SinceD(f||h) andD(g||h) are con-
stants which are independent @fd(q, f,g) is minimized
FromdL/o{f(c)} = {(c)+log f(c)+1—X = 0,weobtain  wheng = h. [

f(c) o< e=¢() where proportional coefficient is determined
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